Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$\left\{\begin{matrix} ax+by=(x-y)^2\\ by+cz=(y-z)^2\\ cz+ax=(z-x)^2 \end{matrix}\right.$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 lamducanhndgv

lamducanhndgv

    Binh nhất

  • Thành viên
  • 24 Bài viết
  • Giới tính:Nam

Đã gửi 26-07-2015 - 21:25

Cho a,b,c là các số thực dương. Giải hệ phương trình 

$\left\{\begin{matrix} ax+by=(x-y)^2\\ by+cz=(y-z)^2\\ cz+ax=(z-x)^2 \end{matrix}\right.$



#2 Thao Huyen

Thao Huyen

    Hạ sĩ

  • Thành viên
  • 93 Bài viết
  • Giới tính:Nam

Đã gửi 27-07-2015 - 07:16

Cho a,b,c là các số thực dương. Giải hệ phương trình 

$\left\{\begin{matrix} ax+by=(x-y)^2\\ by+cz=(y-z)^2\\ cz+ax=(z-x)^2 \end{matrix}\right.$

Dễ dàng $CM$ được: $ax.by.cz=(ax+by)(by+cz)(cz+ax)=(x-y)^2.(y-z)^2.(z-x)^2$

Đặt: $ax=m;by=n;cz=p\Rightarrow mnp=(m+n)(n+p)(m+p)=(mn+mp+n^2+np)(m+p)\Leftrightarrow \sum m^2(n+p)+mnp=0$

Để í rằng: $n+p=by+cz=(y-z)^2\geqslant 0;mnp=ax.by.cz\geqslant 0\Rightarrow VT\geqslant 0$

Do đó: $x=y=z=0$

From The Secret Makes The Women More Beautiful :v


Bài viết đã được chỉnh sửa nội dung bởi Thao Huyen: 27-07-2015 - 07:17

Cuộc sống giống như một cuốn sách. Một vài chương khá buồn, một số chương hạnh phúc và một số chương rất thú vị. Nhưng nếu bạn chưa bao giờ lật thử một trang bạn sẽ không bao giờ biết những gì ở chương tiếp theo!





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh