Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

CMR: tồn tại một chỉ số $i_o$ sao cho $a_{i_0}\;|\;P(k), k\in\mathbb{Z}$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Trung Gauss

Trung Gauss

    Hạ sĩ

  • Thành viên
  • 86 Bài viết

Đã gửi 24-08-2015 - 20:23

Bài toán: Cho tập $S=\{a_1, a_2, ..., a_n\}\subset \mathbb{N^*}$ và $P(x)\in\mathbb{Z}[x]$. Giả sử rằng với mọi $k\in\mathbb{Z^+}$ đều tồn tại chỉ số $i$ sao cho $a_i\;|\;P(k)$. CMR: tồn tại một chỉ số $i_o$ sao cho $a_{i_0}\;|\;P(k), k\in\mathbb{Z}$


Bài viết đã được chỉnh sửa nội dung bởi Trung Gauss: 25-08-2015 - 15:00


#2 Karl Heinrich Marx

Karl Heinrich Marx

    Sĩ quan

  • Thành viên
  • 322 Bài viết
  • Giới tính:Nam

Đã gửi 25-08-2015 - 01:11

Bài toán: Cho tập $S=\{a_1, a_2, ..., a_n\}\subset \mathbb{N^*}$ và $P(x)\in\mathbb{Z}[x]$. Giả sử rằng với mọi $k\in\mathbb{Z^+}$ đều tồn tại chỉ số $i$ sao cho $a_i\;|\;P(k)$. CMR: tồn tại một chỉ số $i_o$ sao cho $a_{i_0}\;|\;P(k), k\in\mathbb{Z}$$

Trước tiên đặt $a$ là BCNN của tất cả các phần tử thuộc $S$.

Với mọi số $r \in Z$ thì luôn tồn tại số $k$ để $r+ka \in Z^+$, khi đó thì $P(r) \equiv P(r+ka)$ (mod $a$), mặt khác tồn tại $a_i$ để $a_i|P(r+ka)$ và $a_i|a$ ta suy ra $a_i|P(r)$.






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh