Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

[HOT] Cách khai triển đa thức 2 biến hệ số nguyên bằng casio


  • Please log in to reply
Chủ đề này có 6 trả lời

#1 etucgnaohtn

etucgnaohtn

    Sĩ quan

  • Thành viên
  • 356 Bài viết
  • Giới tính:Nam
  • Sở thích:Ngắm like tăng dần

Đã gửi 21-10-2015 - 17:32

Sau đây là một thủ thuật khai triển đa thức 2 biến bằng máy tính bỏ túi , và có thể bạn cũng nghĩ ra được nó nếu bạn đã học qua về lim ( giới hạn ) ...


 

CÁCH KHAI TRIỂN ĐA THỨC 2 BIẾN HỆ SỐ NGUYÊN

BẰNG MÁY TÍNH CASIO

 

Tác giả : Lương Đức Nghĩa K47 Tin THPT CSP 

( Tham khảo ghi rõ nguồn thay lời cảm ơn tác giả )

Yêu cầu : Vẫn là hiểu biết sơ bộ về thủ thuật CALC 1000
Bạn nào chưa biết cái này thì mình khuyên nên tìm hiểu về nó đi , ứng dụng của CALC 1000 là rất lớn vì ở đâu có $x$ thì ở đó có CALC 1000 !
Ý tưởng : Dùng lim ( giới hạn )
______________________________________________________
VÍ DỤ 1 : $(x+2y-1)^2(x+y+1)$

Nhận xét : Ta thấy bậc của x , y bằng nhau và bằng 3

Bước 1 :
Tính $(x+2y-1)^2(x+y+1):x^3$ tại $y=1000$ , $x=10^{10}$
Kết quả : 1,0000005
Bước 2 :
Tính $((x+2y-1)^2(x+y+1)-x^3):x^2$ tại $y=1000$ , $x=10^{10}$
Kết quả : $4999,0008 \approx 4999=5y-1$
Bước 3 :
Tính $(x+2y-1)^2(x+y+1)-x^3-(5y-1)x^2$ tại $x=0$ , $y=1000$
Kết quả : $3999997001=4y^3-3y+1$
Bước 4 :
Tính $((x+2y-1)^2(x+y+1)-x^3-(5y-1)x^2-4y^3+3y-1):x$ tại $x=1000$ , $y=1000$
Kết quả : $7997999=8y^2-2y-1$

Như vậy kết quả là : $(x+2y-1)^2(x+y+1)=x^3+(5y-1)x^2+(8y^2-2y-1)x+4y^3-3y+1$

VÍ DỤ 2 : $E=\frac{6x^3y+x^3+9x^2y^2-14x^2y+x^2-6xy^3-15xy^2+17xy-3x+4y^3+4y^2-5y+1}{x+2y-1}$

Nhận xét : Bậc bằng nhau và bằng 2
Ví dụ này khó hơn vì phép tính tràn màn hình , do đó ta phải dùng phương pháp " chia để trị " ( tức là chia nhỏ thành từng phần để trị )

Bước 1 :
Tính $E$ tại $x=10^{10},y=1000$ lưu vào $A$

Tính $E$ tại $x=0,y=1000$ lưu vào $B$
Tính $E$ tại $x=1000,y=1000$ lưu vào C
Bước 2 :
Tính $A:x^2$ tại $x=10^{10}$ ta được $6000,999699\approx6001=6y+1$

$B = 2002999=2y^2+3y-1$
Tính $(C-(6y+1)x^2-2y^2-3y+1):x$ tại $x=1000,y=1000$ ta được $-3009998=-3y^2-10y+2$

Như vậy kết quả là $E=(6y+1)x^2-(3y^2+10y-2)x+2y^2+3y-1$

VÍ DỤ 3 : $F=\sqrt{9x^4y^6 + 6x^3y^4 - 6x^3y^3 + 6x^2y^3 + x^2y^2 - 2x^2y + x^2 + 2xy - 2x +1}$


Nhận xét : Bậc của y là cao hơn ( bằng 3 ) , do đó ta sẽ cho $y=1000$ rồi chia theo $x$

Bước 1 :
Tính $E$ tại $x=10^{10},y=1000$ lưu vào $A$
Tính $E$ tại $x=0,y=1000$ lưu vào $B$
Tính $E$ tại $x=1000,y=1000$ lưu vào $C$

Bước 2 :
Tính $A:x^2$ tại $x=10^{10}$ ta được $3000000000=3y^3$

$B=1$
Tính $(C-3y^3x^2-1):x$ tại $x=1000,y=1000$ ta được $999=y-1$

Như vậy kết quả là $F=\left|3y^3x^2+(y-1)x+1 \right|$



_______________________________________

P/s : Like và share thay lời cảm ơn tác giả !


Bài viết đã được chỉnh sửa nội dung bởi etucgnaohtn: 25-10-2015 - 23:58

Tác giả :

 

Lương Đức Nghĩa 

 

 


#2 Element hero Neos

Element hero Neos

    Trung úy

  • Thành viên
  • 943 Bài viết
  • Giới tính:Không khai báo

Đã gửi 01-11-2015 - 15:16

Sau đây là một thủ thuật khai triển đa thức 2 biến bằng máy tính bỏ túi , và có thể bạn cũng nghĩ ra được nó nếu bạn đã học qua về lim ( giới hạn ) ...


 

CÁCH KHAI TRIỂN ĐA THỨC 2 BIẾN HỆ SỐ NGUYÊN

BẰNG MÁY TÍNH CASIO

 

Tác giả : Lương Đức Nghĩa K47 Tin THPT CSP 

( Tham khảo ghi rõ nguồn thay lời cảm ơn tác giả )

Yêu cầu : Vẫn là hiểu biết sơ bộ về thủ thuật CALC 1000
Bạn nào chưa biết cái này thì mình khuyên nên tìm hiểu về nó đi , ứng dụng của CALC 1000 là rất lớn vì ở đâu có $x$ thì ở đó có CALC 1000 !
Ý tưởng : Dùng lim ( giới hạn )
______________________________________________________
VÍ DỤ 1 : $(x+2y-1)^2(x+y+1)$

Nhận xét : Ta thấy bậc của x , y bằng nhau và bằng 3

Bước 1 :
Tính $(x+2y-1)^2(x+y+1):x^3$ tại $y=1000$ , $x=10^{10}$
Kết quả : 1,0000005
Bước 2 :
Tính $((x+2y-1)^2(x+y+1)-x^3):x^2$ tại $y=1000$ , $x=10^{10}$
Kết quả : $4999,0008 \approx 4999=5y-1$
Bước 3 :
Tính $(x+2y-1)^2(x+y+1)-x^3-(5y-1)x^2$ tại $x=0$ , $y=1000$
Kết quả : $3999997001=4y^3-3y+1$
Bước 4 :
Tính $((x+2y-1)^2(x+y+1)-x^3-(5y-1)x^2-4y^3+3y-1):x$ tại $x=1000$ , $y=1000$
Kết quả : $7997999=8y^2-2y-1$

Như vậy kết quả là : $(x+2y-1)^2(x+y+1)=x^3+(5y-1)x^2+(8y^2-2y-1)x+4y^3-3y+1$

VÍ DỤ 2 : $E=\frac{6x^3y+x^3+9x^2y^2-14x^2y+x^2-6xy^3-15xy^2+17xy-3x+4y^3+4y^2-5y+1}{x+2y-1}$

Nhận xét : Bậc bằng nhau và bằng 2
Ví dụ này khó hơn vì phép tính tràn màn hình , do đó ta phải dùng phương pháp " chia để trị " ( tức là chia nhỏ thành từng phần để trị )

Bước 1 :
Tính $E$ tại $x=10^{10},y=1000$ lưu vào $A$

Tính $E$ tại $x=0,y=1000$ lưu vào $B$
Tính $E$ tại $x=1000,y=1000$ lưu vào C
Bước 2 :
Tính $A:x^2$ tại $x=10^{10}$ ta được $6000,999699\approx6001=6y+1$

$B = 2002999=2y^2+3y-1$
Tính $(C-(6y+1)x^2-2y^2-3y+1):x$ tại $x=1000,y=1000$ ta được $-3009998=-3y^2-10y+2$

Như vậy kết quả là $E=(6y+1)x^2-(3y^2+10y-2)x+2y^2+3y-1$

VÍ DỤ 3 : $F=\sqrt{9x^4y^6 + 6x^3y^4 - 6x^3y^3 + 6x^2y^3 + x^2y^2 - 2x^2y + x^2 + 2xy - 2x +1}$


Nhận xét : Bậc của y là cao hơn ( bằng 3 ) , do đó ta sẽ cho $y=1000$ rồi chia theo $x$

Bước 1 :
Tính $E$ tại $x=10^{10},y=1000$ lưu vào $A$
Tính $E$ tại $x=0,y=1000$ lưu vào $B$
Tính $E$ tại $x=1000,y=1000$ lưu vào $C$

Bước 2 :
Tính $A:x^2$ tại $x=10^{10}$ ta được $3000000000=3y^3$

$B=1$
Tính $(C-3y^3x^2-1):x$ tại $x=1000,y=1000$ ta được $999=y-1$

Như vậy kết quả là $F=\left|3y^3x^2+(y-1)x+1 \right|$



_______________________________________

P/s : Like và share thay lời cảm ơn tác giả !

nếu ở bước 2 mình không biết tách số đó thì làm thế nào?



#3 etucgnaohtn

etucgnaohtn

    Sĩ quan

  • Thành viên
  • 356 Bài viết
  • Giới tính:Nam
  • Sở thích:Ngắm like tăng dần

Đã gửi 26-11-2015 - 01:20

Thì mình đã bảo là phải hiểu biết sơ bộ về CALC 1000 rồi 

Nó chính là thủ thuật 1 trong link này nhé : http://diendantoanho...oán-bằng-casio/


Tác giả :

 

Lương Đức Nghĩa 

 

 


#4 bacdaptrai

bacdaptrai

    Trung sĩ

  • Thành viên
  • 127 Bài viết
  • Giới tính:Nam
  • Đến từ:Thành phố Vũng Tàu
  • Sở thích:chơi bóng đá, học các môn tự nhiên

Đã gửi 26-11-2015 - 08:41

cảm ơn bạn bài viết khá hay



#5 bacdaptrai

bacdaptrai

    Trung sĩ

  • Thành viên
  • 127 Bài viết
  • Giới tính:Nam
  • Đến từ:Thành phố Vũng Tàu
  • Sở thích:chơi bóng đá, học các môn tự nhiên

Đã gửi 26-11-2015 - 11:09

nếu ở bước 2 mình không biết tách số đó thì làm thế nào?

mình nghĩ là nên làm theo tuần tự



#6 zmf94

zmf94

    Lính mới

  • Thành viên
  • 3 Bài viết
  • Giới tính:Nam

Đã gửi 19-01-2016 - 23:09

hay quá , cảm ơn 



#7 anhoigiupem

anhoigiupem

    Binh nhất

  • Thành viên mới
  • 47 Bài viết
  • Giới tính:Nam
  • Đến từ:Nghệ An
  • Sở thích:chưa được tiết lộ

Đã gửi 25-08-2016 - 20:14

tải field lên đi mọi người






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh