Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)}\geq \frac{3}{abc+1}$


  • Please log in to reply
Chủ đề này có 7 trả lời

#1 misakichan

misakichan

    Trung sĩ

  • Thành viên
  • 113 Bài viết
  • Giới tính:Nữ

Đã gửi 20-12-2015 - 19:59

Cho a,b,c>0:

CMR: $\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)}\geq \frac{3}{abc+1}$


Bài viết đã được chỉnh sửa nội dung bởi HappyLife: 20-12-2015 - 22:07


#2 Issac Newton of Ngoc Tao

Issac Newton of Ngoc Tao

    Trung úy

  • Điều hành viên THPT
  • 756 Bài viết
  • Giới tính:Nam
  • Đến từ:KSTN_CNTT_K62_HUST
  • Sở thích:I AM A PERFECT PERSON

Đã gửi 20-12-2015 - 21:28

Cho a,b,c>0:

CMR: $\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)}\geq \frac{3}{abc+1}$

Ta có: 

$a=k\frac{y}{x};b=k\frac{z}{y};c=k\frac{x}{z};abc=k^{3}\Rightarrow VT(BDT)=\sum \frac{x}{k(y+kz)}=\sum \frac{x^{2}}{k(xy+kxz)}\geq \frac{(x+y+z)^{2}}{k(k+1)(xy+yz+zx)}\geq \frac{3}{k^{2}+k}\geq \frac{3}{k^{3}+1}=\frac{3}{abc+1}(dpcm)$ :D  :like 


Bài viết đã được chỉnh sửa nội dung bởi Issac Newton of Ngoc Tao: 20-12-2015 - 21:38

"Attitude is everything"


#3 misakichan

misakichan

    Trung sĩ

  • Thành viên
  • 113 Bài viết
  • Giới tính:Nữ

Đã gửi 20-12-2015 - 21:38

Ta có: 

$a=k\frac{y}{x};b=k\frac{z}{y};c=k\frac{x}{z};abc=k^{3}\Rightarrow VT(BDT)=\sum \frac{x}{k(y+kz)}=\sum \frac{x^{2}}{k(xy+kxz)}\geq \frac{(x+y+z)^{2}}{k(k+1)(xy+yz+zx)}\geq \frac{3}{k^{2}+k}\geq \frac{3}{k^{3}+1}=\frac{3}{abc+1}(dpcm)$ :D  :like 

ukm



#4 Issac Newton of Ngoc Tao

Issac Newton of Ngoc Tao

    Trung úy

  • Điều hành viên THPT
  • 756 Bài viết
  • Giới tính:Nam
  • Đến từ:KSTN_CNTT_K62_HUST
  • Sở thích:I AM A PERFECT PERSON

Đã gửi 20-12-2015 - 21:40

ukm

Mình sửa bài ở trên rồi đấy.


"Attitude is everything"


#5 misakichan

misakichan

    Trung sĩ

  • Thành viên
  • 113 Bài viết
  • Giới tính:Nữ

Đã gửi 20-12-2015 - 21:41

Ta có: 

$a=k\frac{y}{x};b=k\frac{z}{y};c=k\frac{x}{z};abc=k^{3}\Rightarrow VT(BDT)=\sum \frac{x}{k(y+kz)}=\sum \frac{x^{2}}{k(xy+kxz)}\geq \frac{(x+y+z)^{2}}{k(k+1)(xy+yz+zx)}\geq \frac{3}{k^{2}+k}\geq \frac{3}{k^{3}+1}=\frac{3}{abc+1}(dpcm)$ :D  :like 

sao mà đặt a,b,c như z đc ???



#6 Gachdptrai12

Gachdptrai12

    Thượng sĩ

  • Điều hành viên THCS
  • 280 Bài viết
  • Giới tính:Nam
  • Đến từ:11/2 THPT Phan Châu Trinh-Đà Nẵng
  • Sở thích:inequalities, coi anime, tán gái @@

Đã gửi 21-12-2015 - 12:18

đây 1 bài tương tự bài trên nhưng mạnh hơn xí cho (viết trên đt xin ko viết được latex nhé)
a,b,c>o cm
1/a(1+a) + 1/b(1+b) + 1/c(1+c) >= 9/abc+1

#7 Gachdptrai12

Gachdptrai12

    Thượng sĩ

  • Điều hành viên THCS
  • 280 Bài viết
  • Giới tính:Nam
  • Đến từ:11/2 THPT Phan Châu Trinh-Đà Nẵng
  • Sở thích:inequalities, coi anime, tán gái @@

Đã gửi 21-12-2015 - 12:28

vấn đề của bạn mình xin giải thích theo cách hiểu của mình (hỉu sai xin đừng gạch đá) vì a,b,c là các số thực dương nên tồn tại 1 số k sao cho abc=k^3 vì vậy ta có thể đặt a=kx/y b=ky/z c=kz/x thì abc vẫn bằng k^3

#8 thaotran19

thaotran19

    Binh nhì

  • Thành viên
  • 18 Bài viết
  • Giới tính:Nữ
  • Đến từ:Biên Hòa ~ Đồng Nai

Đã gửi 21-12-2015 - 16:31

Cho a,b,c>0:

CMR: $\frac{1}{a(b+1)}+\frac{1}{b(c+1)}+\frac{1}{c(a+1)}\geq \frac{3}{abc+1}$

Mình làm theo cách khác nha :D

 

Ta có:

$\dfrac{1+abc}{a(b+1)}=\dfrac{1+a+abc+ab-a-ab}{a(b+1)}=\dfrac{(1+a)+ab(1+c)-a(1+b)}{a(b+1)}=\dfrac{1+a}{a(1+b)}+\dfrac{b(1+c)}{1+b}-1$

Làm tương tự ta có: $\dfrac{1+abc}{b(c+1)}=\dfrac{1+b}{b(1+c)}+\dfrac{c(1+a)}{1+c}-1$

$\dfrac{1+abc}{c(a+1)}=\dfrac{1+c}{c(1+a)}+\dfrac{a(b+1)}{1+a}-1$

 

Áp dụng Cô-si có:

 

$\dfrac{1+abc}{a(b+1)}+\dfrac{1+abc}{b(c+1)}+\dfrac{1+abc}{c(a+1)}$

$=\dfrac{1+a}{a(1+b)}+\dfrac{b(1+c)}{1+b}-1+\dfrac{1+b}{b(1+c)}+\dfrac{c(1+a)}{1+c}-1+\dfrac{1+c}{c(1+a)}+\dfrac{a(b+1)}{1+a}-1$

$=[\dfrac{1+a}{a(1+b)}+\dfrac{a(b+1)}{1+a}]+[\dfrac{b(1+c)}{1+b}+\dfrac{1+b}{b(1+c)}]+[\dfrac{c(1+a)}{1+c}+ \dfrac{1+c}{c(1+a)}]-3 \geq 2\sqrt{\dfrac{1+a}{a(1+b)}.\dfrac{a(b+1)}{1+a}}+2\sqrt{\dfrac{b(1+c)}{1+b}.\dfrac{1+b}{b(1+c)}}+2\sqrt{\dfrac{c(1+a)}{1+c}. \dfrac{1+c}{c(1+a)}}-3 =2+2+2-3=3 $

 

=>$\dfrac{1+abc}{a(b+1)}+\dfrac{1+abc}{b(c+1)}+\dfrac{1+abc}{c(a+1)} \geq 3$

$<=>\dfrac{1}{a(b+1)}+\dfrac{1}{b(c+1)}+\dfrac{1}{c(a+1)} \geq \dfrac{3}{abc+1} (đpcm)$


Bài viết đã được chỉnh sửa nội dung bởi thaotran19: 21-12-2015 - 16:35

Đừng bao giờ nghĩ rằng bạn đã biết tất cả mọi điều. Và dù người ta có đánh giá bạn cao đến đâu đi nữa, bạn vẫn phải luôn có dũng cảm tự nhủ: ta là một kẻ dốt nát. Đừng để lòng kiêu ngạo xâm chiếm lấy bạn. Vì nó bạn có thể bướng bỉnh ở chỗ cần phải tán thành, vì nó, bạn sẽ từ chối lời khuyên có ích và sự giúp đỡ thân ái, vì nó bạn sẽ mất mức độ khách quan.

 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh