Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh rằng: có $1$ bài toán mà có ít nhất $40$ thí sinh giải được.


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 O0NgocDuy0O

O0NgocDuy0O

    Trung úy

  • Thành viên
  • 760 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:Làm BĐT, Hình học phẳng, Tổ hợp

Đã gửi 21-12-2015 - 17:56

Trong một kì thi, $60$ thí sinh phải giải $3$ bài toán. Khi kết thúc kì thi, người ta nhận thấy rằng: với $2$ thí sinh bất kỳ luôn có ít nhất $1$ bài toán mà cả $2$ thí sinh đó đều giải được. Chứng minh:

$a)$ Nếu có $1$ bài toán mà mọi thí sinh đều không giải được thì phải có $1$ bài toán khác mà mọi thí sinh đều giải được.

$b)$ Có $1$ bài toán mà có ít nhất $40$ thí sinh giải được.


"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")

~O)  ~O)  ~O)


#2 thaotran19

thaotran19

    Binh nhì

  • Thành viên
  • 18 Bài viết
  • Giới tính:Nữ
  • Đến từ:Biên Hòa ~ Đồng Nai

Đã gửi 22-12-2015 - 10:55

Trong một kì thi, $60$ thí sinh phải giải $3$ bài toán. Khi kết thúc kì thi, người ta nhận thấy rằng: với $2$ thí sinh bất kỳ luôn có ít nhất $1$ bài toán mà cả $2$ thí sinh đó đều giải được. Chứng minh:

$a)$ Nếu có $1$ bài toán mà mọi thí sinh đều không giải được thì phải có $1$ bài toán khác mà mọi thí sinh đều giải được.

$b)$ Có $1$ bài toán mà có ít nhất $40$ thí sinh giải được.

b) Gọi 3 bài toán đó lần lượt là $A,B,C$

Theo đề bài mỗi thí sinh giải ít nhất 1 bài toán.

  •  Nếu có 1 thí sinh giải đc duy nhất 1 bài toán,ta xét thí sinh đó với các thí sinh khác thì 60 thí sinh đều làm được bài toán đó.
  •  Nếu mỗi thí sinh giải ít nhất 2 bài toán:  Gọi số thí sinh ko giải được bài toán A là a, thí sinh ko giải được bài B là b, số thí sinh ko giải được bài C là c, số thí sinh giải được cả 3 bài toán là d.

                    $=>a+b+c+d=60$

Giả sử ko có bài toán mà ít nhất 40 thí sinh giải được:

$a+b+d($số thí sinh giải được bài toán $C) <40$

$a+c+d($số thí sinh giải được bài toán $B)<40$

$b+c+d($số thí sinh giải được bài toán $A) <40$

Từ đó ta có: $a+b+d+a+c+d+b+c+d<120$

$<=>2(a+b+c+d)+d<120$

$<=>2.60+d<120<=>d<0$(vô lí)

Vậy có 1 bài toán ít nhất 40 thí sinh giải được.


Đừng bao giờ nghĩ rằng bạn đã biết tất cả mọi điều. Và dù người ta có đánh giá bạn cao đến đâu đi nữa, bạn vẫn phải luôn có dũng cảm tự nhủ: ta là một kẻ dốt nát. Đừng để lòng kiêu ngạo xâm chiếm lấy bạn. Vì nó bạn có thể bướng bỉnh ở chỗ cần phải tán thành, vì nó, bạn sẽ từ chối lời khuyên có ích và sự giúp đỡ thân ái, vì nó bạn sẽ mất mức độ khách quan.

 





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh