Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

$1+\frac{3}{a+b+c}\geq \frac{6}{ab+bc+ca}$


  • Please log in to reply
Chủ đề này có 8 trả lời

#1 Gachdptrai12

Gachdptrai12

    Thượng sĩ

  • Thành viên
  • 280 Bài viết
  • Giới tính:Nam
  • Đến từ:11/2 THPT Phan Châu Trinh-Đà Nẵng
  • Sở thích:inequalities, coi anime, tán gái @@

Đã gửi 02-01-2016 - 23:18

cho a,b,c dương thỏa abc=1 c/m

$1+\frac{3}{a+b+c}\geq \frac{6}{ab+bc+ca}$


Bài viết đã được chỉnh sửa nội dung bởi Gachdptrai12: 02-01-2016 - 23:19


#2 royal1534

royal1534

    Trung úy

  • Thành viên
  • 773 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng
  • Sở thích:VMF!

Đã gửi 03-01-2016 - 00:38

cho a,b,c dương thỏa abc=1 c/m

$1+\frac{3}{a+b+c}\geq \frac{6}{ab+bc+ca}$

Sử dụng bất đẳng thức AM-GM kết hợp nhận xét $abc(a+b+c) \leq \frac{(ab+bc+ca)^{2}}{3}$ ta có:

$VT=\frac{1}{abc}+\frac{3}{a+b+c} \geq 2\sqrt{\frac{3}{abc(a+b+c)}} \geq 2\sqrt{\frac{9}{(ab+bc+ca)^{2}}}=\frac{6}{ab+bc+ca}$ (ĐPCM)

Đăng thức xảy ra khi $a=b=c=1$



#3 superpower

superpower

    Sĩ quan

  • Thành viên
  • 492 Bài viết
  • Giới tính:Nam

Đã gửi 03-01-2016 - 07:50

cho a,b,c dương thỏa abc=1 c/m

$1+\frac{3}{a+b+c}\geq \frac{6}{ab+bc+ca}$

Dồn biến



#4 Gachdptrai12

Gachdptrai12

    Thượng sĩ

  • Thành viên
  • 280 Bài viết
  • Giới tính:Nam
  • Đến từ:11/2 THPT Phan Châu Trinh-Đà Nẵng
  • Sở thích:inequalities, coi anime, tán gái @@

Đã gửi 03-01-2016 - 08:06

thanh niên superpower là fan dồn biến hả nếu bạn làm ra thì đăng post giờ thì mình sẽ đăng bài giải = pp p,q,r 

srry mình ko viết được latex có lẽ chìu mình sẽ đăng bài  giải của mình


Bài viết đã được chỉnh sửa nội dung bởi Gachdptrai12: 03-01-2016 - 08:09


#5 Gachdptrai12

Gachdptrai12

    Thượng sĩ

  • Thành viên
  • 280 Bài viết
  • Giới tính:Nam
  • Đến từ:11/2 THPT Phan Châu Trinh-Đà Nẵng
  • Sở thích:inequalities, coi anime, tán gái @@

Đã gửi 03-01-2016 - 12:31

đặt a+b+c=p , ab+bc+ca=q , abc=r

1+3/p>=6/p<=>pq+3q>=6p<=>q>=6p/(3+p)

ta có 1bđt cơ bản 

(xy+yz+zx)2>=3xyz(x+y+z)=3pr=3p do r=1 =>q2>=3p

chỉ cần cm 3p>=36p2/(p+3)2 đến đây tương đương là ra thôi 

1+3/p


  • TMW yêu thích

#6 dogsteven

dogsteven

    Đại úy

  • Thành viên
  • 1568 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên toán Trần Hưng Đạo, Bình Thuận
  • Sở thích:Anti số học.

Đã gửi 04-01-2016 - 10:47

Dồn biến

Mình không có ý spam trong đây nhưng mình phải nói cái này.

Trên đây là một diễn đàn học tập, theo ý kiến chủ quan của mình thì trong các topic nó phải thật sự nghiêm túc và nguyên tắc. Và mình cảm thấy một điều rằng trong nhiều bài bạn đăng để giải bài, bạn chỉ toàn nói hướng làm ra, không, bạn còn không ghi rõ hướng làm như thế nào để người ta định hướng làm. Người ta đến đây hoặc để hỏi bài hoặc để chia sẻ kinh nghiệm và học hỏi kinh nghiệm chứ không phải để đọc những lời nói mà mình cho đó là "khinh bỉ" như trên. Mong bạn xem lại cho.

 

Quay lại chủ đề. Với điều kiện $abc=1$ thì có lẽ $a+b+c$ và $ab+bc+ca$ có thể thay vai trò cho nhau chăng? Hãy thử thay $a,b,c$ bởi nghịch đảo của chúng.

Từ đó đánh giá $(a+b+c)^2\geqslant 3(ab+bc+ca)$ sẽ được tương tự hóa thành đánh giá $(ab+bc+ca)^2\geqslant 3(a+b+c)$, và ta chặn được hai đầu của $a+b+c$.

Đặt $x=a+b+c$ và $y=ab+bc+ca$ thì $x,y\geqslant 3$ và ta cần chứng minh: $f(x)=(y-6)x+3y\geqslant 0$ chú ý là $\dfrac{y^2}{3}\geqslant x\geqslant \sqrt{3y}$

Đây là một nhị thức bậc nhất theo $x$, khi đó ta chỉ cần chỉ ra $\text{min}\{f(\sqrt{3y}), f\left(\dfrac{y^2}{3}\right)\}\geqslant 0$ là đủ.

Thật vậy, ta kiểm tra trực tiếp:

$f(\sqrt{3y})=(y-6)\sqrt{3y}+3y=\sqrt{3y}(y+\sqrt{3y}-6)\geqslant \sqrt{3y}(3+3-6)=0$

$f\left(\dfrac{y^2}{3}\right)=\dfrac{(y-6)y^2}{3}+3y=\dfrac{y(y-3)^2}{3}\geqslant 0$

Ta có điều phải chứng minh.


Quyết tâm off dài dài cày hình, số, tổ, rời rạc.


#7 Gachdptrai12

Gachdptrai12

    Thượng sĩ

  • Thành viên
  • 280 Bài viết
  • Giới tính:Nam
  • Đến từ:11/2 THPT Phan Châu Trinh-Đà Nẵng
  • Sở thích:inequalities, coi anime, tán gái @@

Đã gửi 04-01-2016 - 18:13

mình xin hỏi chút 


Bài viết đã được chỉnh sửa nội dung bởi Gachdptrai12: 04-01-2016 - 18:17


#8 Gachdptrai12

Gachdptrai12

    Thượng sĩ

  • Thành viên
  • 280 Bài viết
  • Giới tính:Nam
  • Đến từ:11/2 THPT Phan Châu Trinh-Đà Nẵng
  • Sở thích:inequalities, coi anime, tán gái @@

Đã gửi 04-01-2016 - 18:18

Mình không có ý spam trong đây nhưng mình phải nói cái này.

Trên đây là một diễn đàn học tập, theo ý kiến chủ quan của mình thì trong các topic nó phải thật sự nghiêm túc và nguyên tắc. Và mình cảm thấy một điều rằng trong nhiều bài bạn đăng để giải bài, bạn chỉ toàn nói hướng làm ra, không, bạn còn không ghi rõ hướng làm như thế nào để người ta định hướng làm. Người ta đến đây hoặc để hỏi bài hoặc để chia sẻ kinh nghiệm và học hỏi kinh nghiệm chứ không phải để đọc những lời nói mà mình cho đó là "khinh bỉ" như trên. Mong bạn xem lại cho.

 

Quay lại chủ đề. Với điều kiện $abc=1$ thì có lẽ $a+b+c$ và $ab+bc+ca$ có thể thay vai trò cho nhau chăng? Hãy thử thay $a,b,c$ bởi nghịch đảo của chúng.

Từ đó đánh giá $(a+b+c)^2\geqslant 3(ab+bc+ca)$ sẽ được tương tự hóa thành đánh giá $(ab+bc+ca)^2\geqslant 3(a+b+c)$, và ta chặn được hai đầu của $a+b+c$.

Đặt $x=a+b+c$ và $y=ab+bc+ca$ thì $x,y\geqslant 3$ và ta cần chứng minh: $f(x)=(y-6)x+3y\geqslant 0$ chú ý là $\dfrac{y^2}{3}\geqslant x\geqslant \sqrt{3y}$

Đây là một nhị thức bậc nhất theo $x$, khi đó ta chỉ cần chỉ ra $\text{min}\{f(\sqrt{3y}), f\left(\dfrac{y^2}{3}\right)\}\geqslant 0$ là đủ.

Thật vậy, ta kiểm tra trực tiếp:

$f(\sqrt{3y})=(y-6)\sqrt{3y}+3y=\sqrt{3y}(y+\sqrt{3y}-6)\geqslant \sqrt{3y}(3+3-6)=0$

$f\left(\dfrac{y^2}{3}\right)=\dfrac{(y-6)y^2}{3}+3y=\dfrac{y(y-3)^2}{3}\geqslant 0$

Ta có điều phải chứng minh.

phần màu đỏ bạn thay thế có thể làm nó thay thế như thế ư?? mình chưa hỉu lắm bạn hãy nêu rõ đi nhờ đâu bạn nghĩ đến ý tưởng này :)))


Bài viết đã được chỉnh sửa nội dung bởi Gachdptrai12: 04-01-2016 - 18:18


#9 TMW

TMW

    Trung sĩ

  • Thành viên
  • 173 Bài viết
  • Giới tính:Nam
  • Sở thích:lập trình
    cờ tướng
    Chơi đàn, hát một mình

Đã gửi 04-01-2016 - 20:41

cho a,b,c dương thỏa abc=1 c/m

$1+\frac{3}{a+b+c}\geq \frac{6}{ab+bc+ca}$

Ý tưởng rất đơn giản, ta sẽ đưa về biến " a + b + c" để làm

ab + bc + ca >= căn (3(a+b+c))

Đến đây đặt a = 1/ căn(3a+3b+3c) thì bất đẳng thức viết thành:

1 + 9a^2 - 6a >= 0 <=> (1 - 3a)^2 >=0

Thật ra mình thấy không cần dồn biến cho phức tạp

Có điều kĩ thuật dồn biến trên cũng ảo diệu thật đấy. Chắc phải học hỏi






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh