Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

$\frac{1}{1+S_1}+\sum_{i=0}^{n} \frac{1}{2i+2}.S_{2i+1}\leq ...$

bđt hay

  • Please log in to reply
Chưa có bài trả lời

#1 ZzNightWalkerZz

ZzNightWalkerZz

    Trung sĩ

  • Thành viên
  • 159 Bài viết
  • Giới tính:Nam
  • Đến từ:$\boxed{\text{Ɲιgнтмαяє}}$
  • Sở thích:$\blacklozenge\boxed{\text{GodOfCarnage}}\blacklozenge$

Đã gửi 08-03-2016 - 21:09

Cho dãy $S_n$ như sau

$S_1=a_1+a_2+..., S_2=a_1 a_2+.... ,...., S_n=a_1 a_2 ... a_n$ Với $a_1 ,a_2 ....\in [0;1]$

Chứng minh  bất đẳng thức sau :

$\frac{1}{1+S_1}+\sum_{i=0}^{n} \frac{1}{2i+2}.S_{2i+1}\leq 1+\sum_{i=1}^{n} \frac{1}{2i+1}.S_{2i}$


Bài viết đã được chỉnh sửa nội dung bởi ZzNightWalkerZz: 08-03-2016 - 21:10

.

Reaper

.

.

The god of carnage






2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh