Đến nội dung

Hình ảnh

$x^{2}-y^{2}=y^{2}-z^{2}=z^{2}-t^{2}$

- - - - -

  • Please log in to reply
Chủ đề này có 1 trả lời

#1
halloffame

halloffame

    Thiếu úy

  • Điều hành viên OLYMPIC
  • 522 Bài viết
Tìm các số nguyên dương $x,y,z,t$ đôi một phân biệt thỏa $x^{2}-y^{2}=y^{2}-z^{2}=z^{2}-t^{2}.$

Bài viết đã được chỉnh sửa nội dung bởi halloffame: 12-03-2016 - 16:30

Sự học như con thuyền ngược dòng nước, không tiến ắt phải lùi.


#2
Visitor

Visitor

    Hạ sĩ

  • Thành viên
  • 66 Bài viết

Tìm các số nguyên dương $x,y,z,t$ đôi một phân biệt thỏa $x^{2}-y^{2}=y^{2}-z^{2}=z^{2}-t^{2}.$

Bài toán kinh điển từ năm $1640$: ko có cấp số cộng nào có bốn số hạng liên tiếp là số chính phương. 

và lời giải hay nhất của nó:

"

No Four Squares In Arithmetic Progression

 

To prove that four consecutive terms in an arithmetic sequence cannot all be squares, suppose there exist four squares A2, B2, C2, D2 in increasing arithmetic progression, i.e., we have B2-A2 = C2-B2 = D2-C2. We can assume the squares are mutually co-prime, and the parity of the equation shows that each square must be odd. Hence we have co-prime integers u,v such that A = u-v, C = u+v, u2+v2 = B2, and the common difference of the progression is (C2-A2)/2 = 2uv.

 

We also have D2 - B2 = 4uv, which factors as [(D+B)/2][(D-B)/2] = uv. The two factors on the left are co-prime, as are u and v, so there exist four mutually co-prime integers a,b,c,d (exactly one even) such that u = ab, v = cd, D+B = 2ac, and D-B = 2bd. This implies B = ac-bd, so we can substitute into the equation u2+v2 = B2  to give (ab)2+(cd)2 = (ac-bd)2. This quadratic is symmetrical in the four variables, so we can assume c is even and a, b, d are odd. From this quadratic equation we find that c is a rational function of the square root of  a4-a2d2+d4, which implies there is an odd integer m such that  a4-a2d2+d4= m2.

 

Since a and d are odd there exist co-prime integers x and y such that a2 = k(x+y) and d2 = k(x-y), where k = ±1. Substituting into the above quartic gives x2+3y2 = m2, from which it's clear that y must be even and x odd. Changing the sign of x if necessary to make m+x divisible by 3, we have 3(y/2)2 = [(m+x)/2][(m-x)/2], which implies that (m+x)/2 is three times a square, and (m-x)/2 is a square. Thus we have co-prime integers r and s (one odd and one even) such that (m+x)/2 = 3r2, (m-x)/2 = s2, m = 3r2+s2, x = 3r2-s2, and y = ±2rs.

 

Substituting for x and y back into the expressions for a2 and d2 (and transposing if necessary) gives a2 = k(s+r)(s-3r) and d2 = k(s-r)(s+3r). Since the right hand factors are co-prime, it follows that the four quantities (s-3r), (s-r), (s+r), (s+3r) must each have square absolute values, with a common difference of 2r. These quantities must all have the same sign, because otherwise the sum of two odd squares would equal the difference of two odd squares, i.e., 1+1 = 1-1 (mod 4), which is false.

 

Therefore, we must have |3r| < s, so from m = 3r2 + s2 we have 12r2 < m. Also the quartic equation implies m < a2 + d2, so we have the inequality |2r| < |SQRT(2/3)max(a,d)|. Thus we have four squares in arithmetic progression with the common difference |2r| < |2abcd|, the latter being the common difference of the original four squares. This contradicts the fact that there must be a smallest absolute common difference for four squares in arithmetic progression, so the proof is complete.□ "


Bài viết đã được chỉnh sửa nội dung bởi Visitor: 18-03-2016 - 08:13

__________

Bruno Mars





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh