Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Cho $(a,b)=1$, $a^{2}-b^{2}$ là số chính phương khi?


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 O0NgocDuy0O

O0NgocDuy0O

    Trung úy

  • Thành viên
  • 760 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:Làm BĐT, Hình học phẳng, Tổ hợp

Đã gửi 19-03-2016 - 19:35

Chứng minh rằng nếu $(a,b)=1$ thì $a^{2}-b^{2}$ là số chính phương khi và chỉ khi $a+b$ và $a-b$ là số chính phương hoặc gấp đôi số chính phương.


"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")

~O)  ~O)  ~O)


#2 dogsteven

dogsteven

    Đại úy

  • Thành viên
  • 1567 Bài viết
  • Giới tính:Nam
  • Đến từ:Chuyên toán Trần Hưng Đạo, Bình Thuận
  • Sở thích:Anti số học.

Đã gửi 19-03-2016 - 19:58

$a^2-b^2=(a-b)(a+b)$ thì $2a\mid(a-b, a+b)$ và $2b\mid (a-b,a+b)$ nên $2\mid (a-b, a+b)$

Do đó ta có điều phải chứng minh.


Quyết tâm off dài dài cày hình, số, tổ, rời rạc.


#3 O0NgocDuy0O

O0NgocDuy0O

    Trung úy

  • Thành viên
  • 760 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:Làm BĐT, Hình học phẳng, Tổ hợp

Đã gửi 19-03-2016 - 20:45

$a^2-b^2=(a-b)(a+b)$ thì $2a\mid(a-b, a+b)$ và $2b\mid (a-b,a+b)$ nên $2\mid (a-b, a+b)$

Do đó ta có điều phải chứng minh.

Cho em hỏi tại sao $2a\mid(a-b, a+b)$ và $2b\mid (a-b,a+b)$ vậy ạ?


"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")

~O)  ~O)  ~O)


#4 kunsomeone

kunsomeone

    Binh nhì

  • Thành viên
  • 19 Bài viết

Đã gửi 19-03-2016 - 20:57

$a^2-b^2=(a-b)(a+b)$ thì $2a\mid(a-b, a+b)$ và $2b\mid (a-b,a+b)$ nên $2\mid (a-b, a+b)$

Do đó ta có điều phải chứng minh.

Mọi người giải kĩ hơn cho em được không ạ?



#5 OiDzOiOi

OiDzOiOi

    Trung sĩ

  • Thành viên
  • 114 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Quốc Học
  • Sở thích:Gì cũng thích

Đã gửi 20-03-2016 - 20:59

Cho em hỏi tại sao $2a\mid(a-b, a+b)$ và $2b\mid (a-b,a+b)$ vậy ạ?

$(a+b;a-b)=d\Rightarrow (a+b)+(a-b)\vdots d\Leftrightarrow 2b\vdots d$


What is .......>_<.....





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh