Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 2 Bình chọn

$s_{1}=2$, $s_{2}=2+5$,...


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 OiDzOiOi

OiDzOiOi

    Trung sĩ

  • Thành viên
  • 114 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Quốc Học
  • Sở thích:Gì cũng thích

Đã gửi 27-03-2016 - 22:04

Với mỗi số nguyên dương n , ký hiệu $S_{n}$ là tổng n số nguyên tố đầu tiên

$S_{1}=2$ ; $S_{2}=2+3$  ;  $S_{3}=2+3+5$, ...

Chứng minh rằng trong dãy số $S_{1}$ , $S_{2}$, $S_{3}$, ... không tồn tại hai số hạng liên tiếp đều là số chính phương  


Bài viết đã được chỉnh sửa nội dung bởi OiDzOiOi: 27-03-2016 - 22:06

What is .......>_<.....


#2 OiDzOiOi

OiDzOiOi

    Trung sĩ

  • Thành viên
  • 114 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Quốc Học
  • Sở thích:Gì cũng thích

Đã gửi 27-03-2016 - 22:42

Giả sử ngược lại gọi hai tổng đó là $S_n=x^2,S_{n+1}=y^2$  (quy ước $x,y$ nguyên dương)
Khi đó $S_{n+1}-S_n=p$ (quy ước $p$ là số nguyên tố) 
Hay $(y-x)(y+x)=p$ suy ra $y-x=1,y+x=p$ từ đó suy ra $y=\frac{p+1}{2},x=\frac{p-1}{2}$ 
Suy ra $\sqrt{S_n}+\sqrt{S_{n+1}}=\sqrt{p^2}$ . Điều này xảy ra chỉ khi $S_n=0$ (vô lí)
Vậy ta có đpcm

sao lại xảy ra chỉ khi $S_{n}=0$ thôi hả bạn


What is .......>_<.....


#3 OiDzOiOi

OiDzOiOi

    Trung sĩ

  • Thành viên
  • 114 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Quốc Học
  • Sở thích:Gì cũng thích

Đã gửi 27-03-2016 - 22:55

có thể làm như này 

$y=\frac{p+1}{2} \Rightarrow S_{n+1} =(\frac{p+1}{2})^2$

Mà do $n \geq 2 \Rightarrow S_{n+1}=(2+3+5+...+p) \leq (1+3+5+...+p)+2-9-1=1^2-0^2+2^2-1^2+3^2-2^2+...+(\frac{p+1}{2})^2-(\frac{p-1}{2})^2-8 < (\frac{p+1}{2})^2$


Bài viết đã được chỉnh sửa nội dung bởi OiDzOiOi: 27-03-2016 - 22:57

What is .......>_<.....


#4 hthang0030

hthang0030

    Trung sĩ

  • Thành viên
  • 175 Bài viết
  • Giới tính:Nam

Đã gửi 29-03-2016 - 00:00

Đề thi chuyên khtn năm 13-14




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh