Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Thắc mắc về chọn $b$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 eminemdech

eminemdech

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Chuyên Việt Nam
  • Sở thích:Làm toán

Đã gửi 02-04-2016 - 13:47

Bài toán : Lập phương trình đường thẳng qua M(4;3) và tạo với $d$ một góc bằng $30^{o}$

Trong sách tác giả giải như sau : 

+ Phương trình chưa biết có dạng: $ax+by-4a-3b=0$ $(1)$

+Tính toán một hồi ta được phương trình đẳng cấp bậc 2 theo $a,b$: $3a^2+48ab+23b^2=0$

Chọn b=1,tính được a rồi thế vào phương trình $(1)$

Cái mình thắc mắc là sao ta có thể chọn $b=1$ và có phải lúc nào cũng chọn được hay không được chọn trong một số trường hợp 



#2 anh1999

anh1999

    Sĩ quan

  • Thành viên
  • 355 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường THPT lê hữu Trác-Hương sơn-Hà tĩnh

Đã gửi 02-04-2016 - 15:22

Bài toán : Lập phương trình đường thẳng qua M(4;3) và tạo với $d$ một góc bằng $30^{o}$

Trong sách tác giả giải như sau : 

+ Phương trình chưa biết có dạng: $ax+by-4a-3b=0$ $(1)$

+Tính toán một hồi ta được phương trình đẳng cấp bậc 2 theo $a,b$: $3a^2+48ab+23b^2=0$(1)

Chọn b=1,tính được a rồi thế vào phương trình $(1)$

Cái mình thắc mắc là sao ta có thể chọn $b=1$ và có phải lúc nào cũng chọn được hay không được chọn trong một số trường hợp 

bạn hiểu nôm na thế này nếu ta chọn b=k (k$\neq$0)

từ phương trình ta có a=$kx_0$

với $x_0$ là nghiệm của pt $3x^2+48x+32=0$

hiển nhiên a,b thỏa mãn (1)

khi đó ta có pt ax+by-4a-3b=0

<=>$kx_0x+ky-4kx_0-3k=0$

<=> $x_0x+y-4x_0-3=0$

hiển nhiên pt sau ko phụ thuộc vào k nên cho dễ tính toán ta chọn k bằng 1

còn pp chọn này chỉ áp dụng với pt đc viết bởi vectơ chỉ phương và đường thẳng thôi bạn còn các cách viết pt khác như dùng hệ số góc hay jj đó đều ko đc sử dụng đâu bạn

hiểu nôm na là thế này  nếu cho 2 vectơ $\vec{a}(a;b);\vec{b}(ka;kb)$ và 1 điểm k bất kì thì pt đt đi qua m lần lượt nhận $\vec{a};\vec{b}$ làm vtcp là 1 với k$\neq 0$ bạn có thể thử..


Trần Quốc Anh





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh