Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh $\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}\geq 1$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 tienduc

tienduc

    Thiếu úy

  • Thành viên
  • 580 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:$\color{red}{\boxed{\boxed{\rightarrow \bigstar \textrm{Mathematics} \bigstar \leftarrow }}}$

Đã gửi 22-04-2016 - 21:30

Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh

$\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}\geq 1$



#2 revenge

revenge

    Hạ sĩ

  • Thành viên
  • 76 Bài viết
  • Giới tính:Nam
  • Đến từ:trường lê hồng phong thành phố hồ chí minh

Đã gửi 22-04-2016 - 22:07

Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh

$\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}\geq 1$

$\Leftrightarrow 4\sum ab+4\sum a+3\geq 8abc+4 \sum ab+2\sum a+1 \Leftrightarrow 2 \sum a +2 \geq 8abc\Leftrightarrow \sum a \geq 3$

cái bất dẳng thức cuối dúng theo AM-GM



#3 revenge

revenge

    Hạ sĩ

  • Thành viên
  • 76 Bài viết
  • Giới tính:Nam
  • Đến từ:trường lê hồng phong thành phố hồ chí minh

Đã gửi 22-04-2016 - 22:14

Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh

$\frac{1}{2a+1}+\frac{1}{2b+1}+\frac{1}{2c+1}\geq 1$

do abc=1 nên ta có thể thay $a=\frac{yz}{x^2},b=\frac{xz}{y^2},c=\frac{xy}{z^2}$

vậy ta phải chứng minh

$\sum \frac{x^2}{2yz+x^2}\geq 1$

cái này đúng theo C-S


Bài viết đã được chỉnh sửa nội dung bởi revenge: 22-04-2016 - 23:09





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh