Đến nội dung

Hình ảnh

Tìm GTLN: $P=xy^2z^3$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1
pndpnd

pndpnd

    Trung sĩ

  • Thành viên
  • 164 Bài viết

Cho $x,y,z$ thỏa mãn $x,y,z\epsilon (0;1]$ và $\frac{1}{2\sqrt{x}+5}+\frac{2}{2\sqrt{y}+5}+\frac{3}{2\sqrt{z}+5}=0$. Tìm GTLN: $P=xy^2z^3$



#2
quangtq1998

quangtq1998

    Trung sĩ

  • Thành viên
  • 192 Bài viết

Cho $x,y,z$ thỏa mãn $x,y,z\epsilon (0;1]$ và $\frac{1}{2\sqrt{x}+5}+\frac{2}{2\sqrt{y}+5}+\frac{3}{2\sqrt{z}+5}=0$. Tìm GTLN: $P=xy^2z^3$

 
Chắc đề bài cho :$\frac{1}{2\sqrt{x}+5}+\frac{2}{2\sqrt{y}+5}+\frac{3}{2\sqrt{z}+5}=1$

 

Xét hàm :

                  $ f(t) = ln(t^2) + \frac{72}{2t+5} $ trên khoảng $ t \in (0;1] ) $

                  $f'(t) = 0 \Leftrightarrow 4t^2 - 52t + 25 = 0 \Leftrightarrow t = \frac{1}{2} $ 

 

                  $f(t) \leq max ${ $\lim_{t\rightarrow 0} f(t) , f(1) , f(0.5) $}  

 

    Hay  

                          $f(t) \leq f(0.5) $

 

              $\Rightarrow ln(t^2) \leq 12-2ln2 - \frac{72}{2t+5} $

 

  Thay $  t = \sqrt{x}, \sqrt{y} , \sqrt{z}$ vào ta được : 

 

                      $ ln(x)    \leq 12 - 2ln2 - \frac{72}{2\sqrt{x} + 5}$

                      $ln (y^2)  \leq 2(12-2ln2) - 72\frac{2}{2\sqrt{y} + 5 } $

                     $  ln ( z^3) \leq 3(12-2ln2 ) - 72\frac{3}{2\sqrt{z} + 5} $

 

Cộng các vế với vế ta được : 

      $ln (x) + ln (y^2) + ln(z^3 ) \leq 6(12-2ln2) - 72  (\frac{1}{2\sqrt{x}+5}+\frac{2}{2\sqrt{y}+5}+\frac{3}{2\sqrt{z}+5}) = -12ln2 $

 

Hay $ln ( xy^2z^3) \leq ln ( 2^{-12} ) \rightarrow P \leq 2^{-12} $

Dấu $ "="$ xảy ra khi $z = y =x = \frac{1}{4} $

                      


Bài viết đã được chỉnh sửa nội dung bởi quangtq1998: 22-05-2016 - 22:08


#3
pndpnd

pndpnd

    Trung sĩ

  • Thành viên
  • 164 Bài viết

 
Chắc đề bài cho :$\frac{1}{2\sqrt{x}+5}+\frac{2}{2\sqrt{y}+5}+\frac{3}{2\sqrt{z}+5}=1$

 

Xét hàm :

                  $ f(t) = ln(t^2) + \frac{72}{2t+5} $ trên khoảng $ t \in (0;1] ) $

                  $f'(t) = 0 \Leftrightarrow 4t^2 - 52t + 25 = 0 \Leftrightarrow t = \frac{1}{2} $ 

 

                  $f(t) \leq max ${ $\lim_{t\rightarrow 0} f(t) , f(1) , f(0.5) $}  

 

    Hay  

                          $f(t) \leq f(0.5) $

 

              $\Rightarrow ln(t^2) \leq 12-2ln2 - \frac{72}{2t+5} $

 

  Thay $  t = \sqrt{x}, \sqrt{y} , \sqrt{z}$ vào ta được : 

 

                      $ ln(x)    \leq 12 - 2ln2 - \frac{72}{2\sqrt{x} + 5}$

                      $ln (y^2)  \leq 2(12-2ln2) - 72\frac{2}{2\sqrt{y} + 5 } $

                     $  ln ( z^3) \leq 3(12-2ln2 ) - 72\frac{3}{2\sqrt{z} + 5} $

 

Cộng các vế với vế ta được : 

      $ln (x) + ln (y^2) + ln(z^3 ) \leq 6(12-2ln2) - 72  (\frac{1}{2\sqrt{x}+5}+\frac{2}{2\sqrt{y}+5}+\frac{3}{2\sqrt{z}+5}) = -12ln2 $

 

Hay $ln ( xy^2z^3) \leq ln ( 2^{-12} ) \rightarrow P \leq 2^{-12} $

Dấu $ "="$ xảy ra khi $z = y =x = \frac{1}{4} $

                      

Bạn ơi tại sao bạn lại chọn được hàm này để xét vậy?  $ f(t) = ln(t^2) + \frac{72}{2t+5} $ 



#4
quangtq1998

quangtq1998

    Trung sĩ

  • Thành viên
  • 192 Bài viết

Bạn ơi tại sao bạn lại chọn được hàm này để xét vậy?  $ f(t) = ln(t^2) + \frac{72}{2t+5} $ 

 

Thì $ P$  có dạng tích , điều kiện cho có dạng tổng nên ta chuyển $ P$ dưới dạng tổng bằng cách  lấy $ ln$ 2 vế. 
Còn việc còn lại chỉ là chọn hằng số
$k $ sao cho : 
 $ f(t) = ln(t^2) + \frac{k}{2t+5} $ có $ f'(0.5) = 0 $






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh