Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh rằng $DN⊥MH.$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 O0NgocDuy0O

O0NgocDuy0O

    Trung úy

  • Thành viên
  • 760 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:Làm BĐT, Hình học phẳng, Tổ hợp

Đã gửi 06-07-2016 - 09:07

Cho tứ giác $ABCD$ nội tiếp đường tròn $(O)$. Hai đường chéo $AC$ và $BD$ vuông góc với nhau tại $H$. Gọi $M$ là điểm trên cạnh $AB$ sao cho $AM=\frac{1}{3}AB$ và $N$ là trung điểm của $HC$. Chứng minh rằng $DN⊥MH.$


"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")

~O)  ~O)  ~O)


#2 hoaichung01

hoaichung01

    Hạ sĩ

  • Thành viên
  • 60 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nghĩa Đàn , Nghệ An ( A1K45 PBC )

Đã gửi 06-07-2016 - 15:03

Cho tứ giác $ABCD$ nội tiếp đường tròn $(O)$. Hai đường chéo $AC$ và $BD$ vuông góc với nhau tại $H$. Gọi $M$ là điểm trên cạnh $AB$ sao cho $AM=\frac{1}{3}AB$ và $N$ là trung điểm của $HC$. Chứng minh rằng $DN⊥MH.$

gọi E ,F lần lượt là trung điểm của HB , MB

=> AM = MF = FB = $\frac{1}{3 }$AB

K,G lần lượt là giao điểm của MH với DN và AE

$\Delta AHB$ đồng dạng $\Delta DHC$ => $\frac{AH}{HB}=\frac{DH}{HC}\Rightarrow \frac{AH}{2HE}=\frac{DH}{2HN}\Rightarrow \frac{AH}{HE}=\frac{DH}{HN}$

=>$\Delta AHE$ đồng dạng $\Delta DHN$=> $\angle NDH =\angle EAH$

Ta có : HM//EF ; AG=GE ;

$\Rightarrow \Delta AHG$ cân tại G => $\angle AHG =\angle EAG$

Ta có : $\angle KDH +\angle DHK= \angle EAH +\angle DHK=\angle AHG+\angle DHK=90$

=> $\Delta DHK$ vuông góc tại K

=> đpcm






2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh