Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

MAX: $T=\frac{a(b+c)}{(b+c)^2+a^2}+\frac{b(c+a)}{(c+a)^2+b^2}+\frac{c(a+b)}{(a+b)^2+c^2}$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Baoriven

Baoriven

    Thượng úy

  • Thành viên
  • 1242 Bài viết
  • Giới tính:Nữ
  • Đến từ:$\boxed{\textrm{CTG}}$ $\boxed{\textrm{~1518~}}$
  • Sở thích:$\mathfrak{MATHS}$

Đã gửi 11-07-2016 - 08:20

Cho a,b,c dương. Tìm GTLN của:

$T=\frac{a(b+c)}{(b+c)^2+a^2}+\frac{b(c+a)}{(c+a)^2+b^2}+\frac{c(a+b)}{(a+b)^2+c^2}$


$\mathfrak{LeHoangBao - 4M - CTG1518}$

#2 the unknown

the unknown

    Thượng sĩ

  • Thành viên
  • 208 Bài viết
  • Giới tính:Nam
  • Đến từ:Nothingness
  • Sở thích:unknown

Đã gửi 11-07-2016 - 09:14

Cho a,b,c dương. Tìm GTLN của:

$T=\frac{a(b+c)}{(b+c)^2+a^2}+\frac{b(c+a)}{(c+a)^2+b^2}+\frac{c(a+b)}{(a+b)^2+c^2}$

Chuẩn hóa $a+b+c=3$. Khi đó ta sẽ tìm GTLN của: $\sum \frac{a(3-a)}{(3-a)^2+a^2}$.

Ta sẽ chứng minh: $\frac{a(3-a)}{(3-a)^2+a^2}\leq \frac{9}{25}a+\frac{1}{25}\Leftrightarrow \frac{9(a-1)^2(2a+1)}{25(a^2+(3-a)^2)}\geq 0$ ( hiển nhiên đúng)

Do đó $\sum \frac{a(3-a)}{a^2+(3-a)^2}\leq \sum (\frac{9}{25}a+\frac{1}{25})= \frac{6}{5}$

Nên GTLN của $T$ là  $\frac{6}{5}$, xảy ra khi $a=b=c$.


$\texttt{If you don't know where you are going, any road will get you there}$


#3 hoaichung01

hoaichung01

    Hạ sĩ

  • Thành viên
  • 60 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nghĩa Đàn , Nghệ An ( A1K45 PBC )

Đã gửi 11-07-2016 - 09:17

Cho a,b,c dương. Tìm GTLN của:

$T=\frac{a(b+c)}{(b+c)^2+a^2}+\frac{b(c+a)}{(c+a)^2+b^2}+\frac{c(a+b)}{(a+b)^2+c^2}$

đây là dạng BĐT đối xứng thuần nhất nên ta giả sử a+b+c=1

Ta có $1-2a+2a^{2}=1-2a(1-a)\geq 1-\frac{(a+1)^{2}}{4}=\frac{(1-a)(3+a)}{4}\Rightarrow \frac{a(1-a)}{1-2a+2a^{2}}\leq \frac{4a}{3+a}=4-\frac{12}{a+3}$

$\frac{b(1-b)}{1-2b+2b^{2}}\leq 4-\frac{12}{3+b}$

$\frac{c(1-c)}{1-2c+2c^{2}}\leq 4-\frac{12}{3+c}$

$T\leq 12-12(\frac{1}{3+a}+\frac{1}{3+b}+\frac{1}{3+c})\leq \frac{6}{5}$






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh