Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Tìm GTLN của $P=a^3+b^3+5c^3$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 chanlerscofield

chanlerscofield

    Binh nhất

  • Thành viên mới
  • 38 Bài viết

Đã gửi 18-07-2016 - 21:49

Cho $a,b,c$ là các số thực thuộc đoạn $\left [ 1;4 \right ]$ và $a+b+2c=8$. Tìm GTLN của $P=a^3+b^3+5c^3$



#2 Tran Quoc Khang

Tran Quoc Khang

    Binh nhất

  • Thành viên mới
  • 43 Bài viết
  • Giới tính:Nam
  • Đến từ:Tây Ninh

Đã gửi 24-07-2016 - 17:00

$MaxP=56 \Leftrightarrow a=b=c=2$



#3 dat9adst20152016

dat9adst20152016

    Trung sĩ

  • Thành viên
  • 174 Bài viết
  • Giới tính:Nam
  • Đến từ:Nam Định
  • Sở thích:Math

Đã gửi 24-07-2016 - 22:52

Ta có:8=a+b+2c$\geq$2+2c$\Rightarrow c\leq 3$

 Với a,b$\in [1;4]$ và c$\in [1;3]$ ta có:

  P=a3+b3+5c3=(a+b)3-3ab(a+b)+5c3$\leq$(a+b)3-3(a+b)+5c3

 $\Rightarrow P\leq$(8-2c)3-3(8-2c)+5c3=137-(3c3-96c2+378c-351)=137-3(c-3)(c2-29c+39)

 Với  c$\in [1;3]$ thì c2-29c+39$\leq $0 và c-3$\leq $0$\Rightarrow 3(c-3)(c^{2}-29c+39)\geq 0$

 $\Rightarrow P\leq 137$

Dấu = xảy ra khi a=b=1 và c=3


     Ví như dòng sông nào cũng bắt nguồn từ những con suối nhỏ, mỗi bài toán dù khó đến đâu cũng có nguồn gốc từ những bài toán đơn giản, có khi rất quen thuộc đối với chúng ta.
                                              -G. Polya-


#4 eminemdech

eminemdech

    Hạ sĩ

  • Thành viên
  • 80 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Chuyên Việt Nam
  • Sở thích:Làm toán

Đã gửi 26-07-2016 - 20:51

Ta có:8=a+b+2c$\geq$2+2c$\Rightarrow c\leq 3$

 Với a,b$\in [1;4]$ và c$\in [1;3]$ ta có:

  P=a3+b3+5c3=(a+b)3-3ab(a+b)+5c3$\leq$(a+b)3-3(a+b)+5c3

 $\Rightarrow P\leq$(8-2c)3-3(8-2c)+5c3=137-(3c3-96c2+378c-351)=137-3(c-3)(c2-29c+39)

 Với  c$\in [1;3]$ thì c2-29c+39$\leq $0 và c-3$\leq $0$\Rightarrow 3(c-3)(c^{2}-29c+39)\geq 0$

 $\Rightarrow P\leq 137$

Dấu = xảy ra khi a=b=1 và c=3

cho mình hỏi làm sao bạn phân tích được ra cái này vậy






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh