Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Mở rộng bất đẳng thức Karamata

bất đẳng thức giải tích hàm lồi

  • Please log in to reply
Chưa có bài trả lời

#1 Oai Thanh Dao

Oai Thanh Dao

    Hạ sĩ

  • Thành viên
  • 70 Bài viết

Đã gửi 02-08-2016 - 08:17

Cho $f(x)$ là hàm số thực lồi và liên tục trên $I$. Giả sử $x_1, . . . , x_n$ và $y_1, . . . , y_n$ thuộc $I$ sao cho hai điều kiện sau đây được thỏa mãn:
 
1. $x_1 \ge x_2 \ge x_3.....\ge x_n,$ và $y_1 \ge y_2 \ge y_3.....\ge y_n$
 
2. $x_1+...+x_i \ge y_1+.....+y_i$ và $x_{i+1}+...+x_n \le y_{i+1}+...+y_n$ với $i=1,....,n-1$ chứng minh rằng
 
$$\frac{f(x_1)+f(x_2)+....+f(x_n)}{n}-f(\frac{x_1+x_2+....+x_n}{n}) \ge \frac{f(y_1)+f(y_2)+....+f(y_n)}{n}-f(\frac{y_1+y_2+....+y_n}{n}) $$
 
Đẳng thức xảy ra nếu và chỉ nếu $x_i=y_i$  với mọi $i \in {1, 2,...,n}$

Bài viết đã được chỉnh sửa nội dung bởi Oai Thanh Dao: 02-08-2016 - 08:22






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: bất đẳng thức, giải tích hàm lồi

0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh