Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$2^{n}a+b$


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 TNTFlashNo1

TNTFlashNo1

    Hạ sĩ

  • Banned
  • 67 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Sư Phạm-Hà Nội
  • Sở thích:→★๖ۣۜMa†hs★←

Đã gửi 18-09-2016 - 00:18

Cho $2^{n}a+b$ là số chính phương $\forall n\in N$

C/m:a=0 và b là số chính phương


 

๖ۣۜMa†hs

#2 I Love MC

I Love MC

    Đại úy

  • Thành viên
  • 1864 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Quốc Học
  • Sở thích:Number theory,Combinatoric

Đã gửi 27-10-2016 - 16:35

Từ đề bài ta có tồn tại dãy số nguyên không âm $(x_n)_{n\ge 1}$ sao cho $a.2^n+b=x_n^2 \Rightarrow x_n=\sqrt{a.2^n+b}$ 
Khi đó ta có $2x_n-x_{n+2}=\frac{3b}{\sqrt{a.2^{n+2}+b}+\sqrt{a.2^{n+2}+b}}$ 
Suy ra $lim_{n \rightarrow +\infty}(2x_n-x_{n+2})=0$ mà dãy $\{2x_n-x_{n+2}\}$ nguyên nên tồn tại $k_0 \in \mathbb{N^*}$ để mà 
$2x_n-x_{n+2}=0,\forall n \ge k_0$ hay $2x_n=x_{n+2},\forall n \ge k_0$ 
$\Leftrightarrow 2\sqrt{a.2^n+b}=\sqrt{a.2^{n+2}+b},\forall n \ge k_0 \Leftrightarrow b=0$ 
Do đó $a.2^n$ là số chính phương với mọi số nguyên không âm $n$. Hiển nhiên ta phải có $a=0$ (đpcm)



#3 yagami wolf

yagami wolf

    Hạ sĩ

  • Thành viên
  • 66 Bài viết

Đã gửi 27-10-2016 - 19:41

Từ đề bài ta có tồn tại dãy số nguyên không âm $(x_n)_{n\ge 1}$ sao cho $a.2^n+b=x_n^2 \Rightarrow x_n=\sqrt{a.2^n+b}$ 
Khi đó ta có $2x_n-x_{n+2}=\frac{3b}{\sqrt{a.2^{n+2}+b}+\sqrt{a.2^{n+2}+b}}$ 
Suy ra $lim_{n \rightarrow +\infty}(2x_n-x_{n+2})=0$ mà dãy $\{2x_n-x_{n+2}\}$ nguyên nên tồn tại $k_0 \in \mathbb{N^*}$ để mà 
$2x_n-x_{n+2}=0,\forall n \ge k_0$ hay $2x_n=x_{n+2},\forall n \ge k_0$ 
$\Leftrightarrow 2\sqrt{a.2^n+b}=\sqrt{a.2^{n+2}+b},\forall n \ge k_0 \Leftrightarrow b=0$ 
Do đó $a.2^n$ là số chính phương với mọi số nguyên không âm $n$. Hiển nhiên ta phải có $a=0$ (đpcm)

giải cách số đi



#4 Kamii0909

Kamii0909

    Trung sĩ

  • Thành viên
  • 158 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Huệ
  • Sở thích:Mathematic, Light Novel

Đã gửi 02-11-2016 - 14:33

Từ đề bài ta có tồn tại dãy số nguyên không âm $(x_n)_{n\ge 1}$ sao cho $a.2^n+b=x_n^2 \Rightarrow x_n=\sqrt{a.2^n+b}$ 
Khi đó ta có $2x_n-x_{n+2}=\frac{3b}{\sqrt{a.2^{n+2}+b}+\sqrt{a.2^{n+2}+b}}$ 
Suy ra $lim_{n \rightarrow +\infty}(2x_n-x_{n+2})=0$ mà dãy $\{2x_n-x_{n+2}\}$ nguyên nên tồn tại $k_0 \in \mathbb{N^*}$ để mà 
$2x_n-x_{n+2}=0,\forall n \ge k_0$ hay $2x_n=x_{n+2},\forall n \ge k_0$ 
$\Leftrightarrow 2\sqrt{a.2^n+b}=\sqrt{a.2^{n+2}+b},\forall n \ge k_0 \Leftrightarrow b=0
Do đó $a.2^n$ là số chính phương với mọi số nguyên không âm $n$. Hiển nhiên ta phải có $a=0$ (đpcm)

Đề ra đâu có $b=0$ đâu,chỉ $a=0$ mà



#5 tay du ki

tay du ki

    Thượng sĩ

  • Thành viên
  • 205 Bài viết
  • Giới tính:Nam

Đã gửi 10-01-2017 - 18:06

Từ đề bài ta có tồn tại dãy số nguyên không âm $(x_n)_{n\ge 1}$ sao cho $a.2^n+b=x_n^2 \Rightarrow x_n=\sqrt{a.2^n+b}$

Khi đó ta có $2x_n-x_{n+2}=\frac{3b}{\sqrt{a.2^{n+2}+b}+\sqrt{a.2^{n+2}+b}}$
Suy ra $lim_{n \rightarrow +\infty}(2x_n-x_{n+2})=0$ mà dãy $\{2x_n-x_{n+2}\}$ nguyên nên tồn tại $k_0 \in \mathbb{N^*}$ để mà
$2x_n-x_{n+2}=0,\forall n \ge k_0$ hay $2x_n=x_{n+2},\forall n \ge k_0$
$\Leftrightarrow 2\sqrt{a.2^n+b}=\sqrt{a.2^{n+2}+b},\forall n \ge k_0 \Leftrightarrow b=0$
Do đó $a.2^n$ là số chính phương với mọi số nguyên không âm $n$. Hiển nhiên ta phải có $a=0$ (đpcm)

Bài này thầy cẩn kiểm tra lớp 9 giờ mà có cách lớp 9 thì tuyêt

      :ukliam2: Cố gắng trở thành nhà toán học vĩ đại nhất thế giới :ukliam2:  

 

 




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh