Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

MAX: $P=\frac{1}{9-ab}+\frac{1}{9-bc}+\frac{1}{9-ca}$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 Baoriven

Baoriven

    Thượng úy

  • Thành viên
  • 1242 Bài viết
  • Giới tính:Nữ
  • Đến từ:$\boxed{\textrm{CTG}}$ $\boxed{\textrm{~1518~}}$
  • Sở thích:$\mathfrak{MATHS}$

Đã gửi 18-09-2016 - 16:35

Cho $a,b,c> 0$ và $a+b+c=3$. Tìm GTLN của:

$P=\frac{1}{9-ab}+\frac{1}{9-bc}+\frac{1}{9-ca}$


$\mathfrak{LeHoangBao - 4M - CTG1518}$

#2 hoaichung01

hoaichung01

    Hạ sĩ

  • Thành viên
  • 60 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nghĩa Đàn , Nghệ An ( A1K45 PBC )

Đã gửi 18-09-2016 - 16:48


ta cần chứng minh $\sum \frac{1}{9-ab}\leq \frac{3}{8}$$\Leftrightarrow 8(243-18p+3r)\leq 3(729-81q+27r-r^{2})$$\Leftrightarrow 243-99q+57r-3r^{2}\geq 0$

với $p=a+b+c ; q=ab+bc+ca ; r=abc$

$3=3(\frac{a+b+c}{3})^{6}\geq 3(abc)^{2}\Rightarrow 1\geq r^{2}$

theo BĐT schur $r\geq \frac{p(4q-p^{2})}{3}\Rightarrow 57r\geq 19(4q-9)$

nên ta cần cm $72-23q-3r^{2}\geq 0\Leftrightarrow 3(1-r^{2})+23(3-q)\geq 0$  luôn đúng 

ta có bài tổng quát $a,b,c \geq 0, a+b+c=3 , k\geq 6$

$\sum \frac{1}{k-ab}\leq \frac{3}{k-1}$


Bài viết đã được chỉnh sửa nội dung bởi hoaichung01: 18-09-2016 - 16:51


#3 Minh Hieu Hoang

Minh Hieu Hoang

    Sĩ quan

  • Banned
  • 307 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình
  • Sở thích:mối tình đầu

Đã gửi 18-09-2016 - 17:04

mọi người xem cách giải của em sai ở đâu ạ

 Ta sẽ tìm min $-P$

 

ta cần chứng minh $\sum \frac{1}{9-ab}\leq \frac{3}{8}$$\Leftrightarrow 8(243-18p+3r)\leq 3(729-81q+27r-r^{2})$$\Leftrightarrow 243-99q+57r-3r^{2}\geq 0$

với $p=a+b+c ; q=ab+bc+ca ; r=abc$

$3=3(\frac{a+b+c}{3})^{6}\geq 3(abc)^{2}\Rightarrow 1\geq r^{2}$

theo BĐT schur $r\geq \frac{p(4q-p^{2})}{3}\Rightarrow 57r\geq 19(4q-9)$

nên ta cần cm $72-23q-3r^{2}\geq 0\Leftrightarrow 3(1-r^{2})+23(3-q)\geq 0$  luôn đúng 

ta có bài tổng quát $a,b,c \geq 0, a+b+c=3 , k\geq 6$

$\sum \frac{1}{k-ab}\leq \frac{3}{k-1}$

bạn có tài liệu về schur dễ hiểu ko . mình đọc nhiều tài liệu về schur mà ko áp dụng vào bài giải được


 
"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")
 

#4 Baoriven

Baoriven

    Thượng úy

  • Thành viên
  • 1242 Bài viết
  • Giới tính:Nữ
  • Đến từ:$\boxed{\textrm{CTG}}$ $\boxed{\textrm{~1518~}}$
  • Sở thích:$\mathfrak{MATHS}$

Đã gửi 18-09-2016 - 21:08

Ta có: $ab\leq (\frac{a+b}{2})^2=\frac{(3-c)^2}{4}\Rightarrow \frac{1}{9-ab}\leq \frac{4}{-c^2+6c+27}$.

Ta chứng minh $f(a)+f(b)+f(c)\leq \frac{3}{8}$. với $f(x)=\frac{4}{-x^2+6x+27},\forall x\in (0;3)$.

Ta có: $\frac{4}{-x^2+6x+27}-\frac{9-x}{4}=\frac{(x-1)^2(x-13)}{64(-x^2+6x+27)}\leq 0,\forall x\in (0;3)$.

Từ đó ta có đpcm.


$\mathfrak{LeHoangBao - 4M - CTG1518}$




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh