Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$(n!+1;(n+1)!)$


  • Please log in to reply
Chủ đề này có 11 trả lời

#1 Minh Hieu Hoang

Minh Hieu Hoang

    Sĩ quan

  • Banned
  • 307 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình
  • Sở thích:mối tình đầu

Đã gửi 01-10-2016 - 18:41

Cho n là một số nguyên dương .Tìm $(n!+1;(n+1)!)$


 
"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")
 

#2 le truong son

le truong son

    Thượng sĩ

  • Thành viên
  • 225 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Võ Nguyên Giap

Đã gửi 01-10-2016 - 20:02

Cho n là một số nguyên dương .Tìm $(n!+1;(n+1)!)$

Áp dụng định lí Wilson: Với P là số nguyên tố $(p-1)!\equiv -1(mod p)$



#3 Minh Hieu Hoang

Minh Hieu Hoang

    Sĩ quan

  • Banned
  • 307 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình
  • Sở thích:mối tình đầu

Đã gửi 01-10-2016 - 20:08

Áp dụng định lí Wilson: Với P là số nguyên tố $(p-1)!\equiv -1(mod p)$

trog đề đâu có số nguyên tố


 
"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")
 

#4 le truong son

le truong son

    Thượng sĩ

  • Thành viên
  • 225 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Võ Nguyên Giap

Đã gửi 01-10-2016 - 20:12

trog đề đâu có số nguyên tố

Chia 2 TH: n+1 là số nt và không phải là số nguyên tố :D  :D



#5 Minh Hieu Hoang

Minh Hieu Hoang

    Sĩ quan

  • Banned
  • 307 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình
  • Sở thích:mối tình đầu

Đã gửi 01-10-2016 - 20:13

Chia 2 TH: n+1 là số nt và không phải là số nguyên tố :D  :D

làm kĩ hơn coi . nếu n k phải số nguyên tố thì làm sao


 
"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")
 

#6 le truong son

le truong son

    Thượng sĩ

  • Thành viên
  • 225 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Võ Nguyên Giap

Đã gửi 01-10-2016 - 20:18

làm kĩ hơn coi . nếu n k phải số nguyên tố thì làm sao

Nếu n +1 không nguyên tố ta có $n!\vdots n+1$=>$(n!+1;(n+1)!)=(n!+1;(n+1)(n!+1)-(n+1))=(n!+1;n+1)=1$ :D  :D


Bài viết đã được chỉnh sửa nội dung bởi le truong son: 01-10-2016 - 20:31


#7 Minh Hieu Hoang

Minh Hieu Hoang

    Sĩ quan

  • Banned
  • 307 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Bình
  • Sở thích:mối tình đầu

Đã gửi 01-10-2016 - 20:28

cho n=4 thì $\left ( 25;5! \right )=5$


 
"...Từ ngay ngày hôm nay tôi sẽ chăm chỉ học hành như Stardi, với đôi tay nắm chặt và hàm răng nghiến lại đầy quyết tâm. Tôi sẽ nỗ lực với toàn bộ trái tim và sức mạnh để hạ gục cơn buồn ngủ vào mỗi tối và thức dậy sớm vào mỗi sáng. Tôi sẽ vắt óc ra mà học và không nhân nhượng với sự lười biếng. Tôi có thể học đến phát bệnh miễn là thoát khỏi cuộc sống nhàm chán khiến mọi người và cả chính tôi mệt mỏi như thế này. Dũng cảm lên! Hãy bắt tay vào công việc với tất cả trái tim và khối óc. Làm việc để lấy lại niềm vui, lấy lại nụ cười trên môi thầy giáo và cái hôn chúc phúc của bố tôi. " (Trích "Những tấm lòng cao cả")
 

#8 le truong son

le truong son

    Thượng sĩ

  • Thành viên
  • 225 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Võ Nguyên Giap

Đã gửi 01-10-2016 - 20:30

cho n=4 thì $\left ( 25;5! \right )=5$

 

Nếu n +1 không nguyên tố ta có $n!\vdots n+1$=>$(n!+1;(n+1)!)=(n!+1;(n+1)(n!+1)-(n+1))=(n!+1;n+1)=1$ :D  :D

Đã sửa :D , lm đúng thì :like  vs :(


Bài viết đã được chỉnh sửa nội dung bởi le truong son: 01-10-2016 - 20:31


#9 hoangvunamtan123

hoangvunamtan123

    Trung sĩ

  • Banned
  • 107 Bài viết
  • Giới tính:Nam
  • Đến từ:Huế
  • Sở thích:làm toán

Đã gửi 02-10-2016 - 08:23

Áp dụng định lí Wilson: Với P là số nguyên tố $(p-1)!\equiv -1(mod p)$

áp dụng định lý wilson ,biết được nó chia hết cho p thôi sao kết luận được ước chung lớn nhất là p luôn hay vậy :)



#10 hoangvunamtan123

hoangvunamtan123

    Trung sĩ

  • Banned
  • 107 Bài viết
  • Giới tính:Nam
  • Đến từ:Huế
  • Sở thích:làm toán

Đã gửi 02-10-2016 - 08:37

Nếu n +1 không nguyên tố ta có $n!\vdots n+1$=>$(n!+1;(n+1)!)=(n!+1;(n+1)(n!+1)-(n+1))=(n!+1;n+1)=1$ :D  :D

$n!\vdots n+1 ?$ ,n=3 ?,chưa chứng minh đừng vội kết luận :))),mà cung dúng roi day nhung chưa hoàn thien


Bài viết đã được chỉnh sửa nội dung bởi hoangvunamtan123: 02-10-2016 - 09:25


#11 One Piece

One Piece

    Binh nhất

  • Thành viên mới
  • 36 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN

Đã gửi 02-10-2016 - 08:51

xét  n = 1 2 3
xét n>=4 ta cm nếu n+1 không nguyên tố thì n! chia hết cho n+1
xét n+1 = a.b ( a khác b ) thì đúng
xét n+1 = a^2 thì vì n >=5 nên n>2a ( dễ dàng cm )
=> n! chia hết cho a^2 = n+1
xét n+1 không nguyên tố thì
gọi d là gcd( n!+1 , (n+1)! )
=> d | (n+1)!+n+1 => d|n+1 => d|n! => d|1
xét n+1 nguyên tố thì wilson => n+1 | n!+1 => gọi gcd ( n!+1 , (n+1)! )= q chia hết cho n+1
gs q = (n+1).k => vì q |(n+1)! => k|n! mà k|n!+1 => k =1 
kết luận



#12 le truong son

le truong son

    Thượng sĩ

  • Thành viên
  • 225 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Võ Nguyên Giap

Đã gửi 02-10-2016 - 09:58

$n!\vdots n+1 ?$ ,n=3 ?,chưa chứng minh đừng vội kết luận :))),mà cung dúng roi day nhung chưa hoàn thien

thanks nha :D  :D  :D






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh