Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Cho $S(n)$ là tổng các chữ số của $n$. Tìm $n$ sao cho $S(n)$ là ước lớn nhất của $n$ và khác $n$.

tổng các chữ số của một số

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 honmacarong100

honmacarong100

    Hạ sĩ

  • Thành viên
  • 51 Bài viết
  • Giới tính:Nam
  • Đến từ:THCS Nguyễn Trực
  • Sở thích:Bất đẳng thức, khoa học tự nhiên, toán học,...

Đã gửi 15-10-2016 - 10:41

Cho $S(n)$ là tổng các chữ số của $n$. Tìm $n$ sao cho $S(n)$ là ước lớn nhất của $n$ và khác $n$.


  :ukliam2:  Chúa không chơi trò xúc xắc  :ukliam2:

             God doesn't play die

                             -Albert Einstein-                 

 


#2 Chris yang

Chris yang

    Thượng sĩ

  • Thành viên
  • 223 Bài viết
  • Giới tính:Nữ

Đã gửi 16-10-2016 - 16:49

Tính chất cơ bản: Ước nhỏ nhất (khác $1$) của một số $a$ là một số nguyên dương không vượt quá $\sqrt{a}$. 

Từ đây, suy ra nếu $S(n)$ là ước nguyên dương lớn nhất khác $n$ thì $S^2(n)\geq n$ Suy ra nếu $n$ có $t$ chữ số, khi đó điều kiện cần là $(9t)^2\geq 10^{t-1}$. Khi đó dễ CM $t<5$ bằng quy nạp.

+) Nếu $t=4$, $n=\overline{a_1a_2a_3a_4}$, $n\leq 36^2=1296$ nên $a_1=1\Rightarrow n\leq (1+9+9+9)^2=784$ ( vô lý)

+) Nếu $t=1$ thì hiển nhiên vô lý.

+) Nếu $t=2$ Đặt $n=\overline{a_1a_2}$. Cần có $10a_1+a_2=k(a_1+a_2)$, trong đó $k$ là số nguyên tố nhỏ hơn $\sqrt{99}$, tức là $k\leq 9$

Thay $k=2,3,5,7$ vào $\rightarrow a_1,a_2...$

+) Nếu $t=3$ có $\overline{a_1a_2a_3}\leq 729$ nên $a_1\leq 7\rightarrow n\leq (6+9+9)^2=576\Rightarrow a_1\leq 5\rightarrow n\leq 22^2=484$ nên $a_1\leq 4$

Giờ chỉ cần thử các giá trị $a_1=1,2,3,4$ và tiếp tục làm như TH $t=2$ nhưng với biến $a_2,a_3$ ta sẽ tìm được $n$ thỏa mãn.






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh