Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh rằng tồn tại $f(A)=H \setminus B,g(B)= H \setminus A$

set

  • Please log in to reply
Chủ đề này có 12 trả lời

#1 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1523 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Dốt nhất khoa Toán
  • Sở thích:Unstable homotopy theory

Đã gửi 19-10-2016 - 15:44

Cho tập hợp $H$ , gọi $\rho(H)$ là họ tất cả các tập con của $H$ , xét hai ánh xạ tăng :

$$f,g : \rho(H) \to \rho (H)$$

$$X \subset Y \subset H$$

$$f(X) \subset f(Y) \subset H$$

$$g(X) \subset g(Y) \subset H$$

Chứng minh tồn tại $A,B \subset H$ thỏa mãn 

 

$$f(A)=H \setminus B,g(B)= H \setminus A$$


Bài viết đã được chỉnh sửa nội dung bởi bangbang1412: 19-10-2016 - 15:45

Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#2 redfox

redfox

    Trung sĩ

  • Thành viên
  • 100 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:wild animal, furry

Đã gửi 20-10-2016 - 22:28

Ta có các bổ đề sau

Bổ đề 1: $A\subset B\Rightarrow A\cap C\subset B\cap C, A\setminus C\subset B\setminus C$.

Bổ để 2: $f(A\cap B)\subset f(A)\cap f(B)$.

Bổ đề 3: Nếu $f$ tăng trên $\rho (H)$ thì $f$ luôn có một điểm bất động.

Chứng minh: Ta chứng minh bằng quy nạp với số phần tử của $H$

$\left | H \right |=0$, hiển nhiên.

Giả sử với $\left | H \right |\leq n$ bài toán đúng. Xét tập $H'=H\cup \left \{ a \right \},H\cap \left \{ a \right \}=\varnothing ,\left | H \right |=n$. Xét hai hàm trên $\rho (H)$: $g(A)=f(A)\setminus \left \{ a \right \},h(A)=f(A\cup \left \{ a \right \})\setminus \left \{ a \right \}$. Theo bổ đề 1, hai hàm này tăng, do vậy theo giả thiết quy nạp tồn tại hai tập $A,B\subset H$ sao cho $g(A)=A, h(B)=B$.

Nếu $f(B\cup \left \{ a \right \})=B\cup \left \{ a \right \}$, bài toán đúng với $n+1$.

Nếu $f(B\cup \left \{ a \right \})=B$, xét tập $A\cap B\setminus H$, theo bổ đề 2 ta có $\forall X\subset A\cap B, f(X)\subset A\cap B$, do vậy theo giả thiết quy nạp bài toán đúng với $n+1$.

Bổ đề $4$: $A\subset B\Leftrightarrow C\setminus B\subset C\setminus A$.

Ta quay lại bài toán. Xét hàm $h(X)=f(H\setminus g(H\setminus X))$. Theo bổ đề 4 ta có hàm $h$ tăng. Theo bổ đề 3 ta có $h$ tồn tại điểm bất động $X$. Dễ thấy hai tập $H\setminus g(H\setminus X) ,H\setminus X$ thỏa mãn đề bài.

(Q.E.D)

Bài này lạ quá. Anh lấy ở đâu vậy.


Bài viết đã được chỉnh sửa nội dung bởi redfox: 20-10-2016 - 22:31


#3 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1523 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Dốt nhất khoa Toán
  • Sở thích:Unstable homotopy theory

Đã gửi 20-10-2016 - 22:48

Ta có các bổ đề sau

Bổ đề 1: $A\subset B\Rightarrow A\cap C\subset B\cap C, A\setminus C\subset B\setminus C$.

Bổ để 2: $f(A\cap B)\subset f(A)\cap f(B)$.

Bổ đề 3: Nếu $f$ tăng trên $\rho (H)$ thì $f$ luôn có một điểm bất động.

Chứng minh: Ta chứng minh bằng quy nạp với số phần tử của $H$

$\left | H \right |=0$, hiển nhiên.

Giả sử với $\left | H \right |\leq n$ bài toán đúng. Xét tập $H'=H\cup \left \{ a \right \},H\cap \left \{ a \right \}=\varnothing ,\left | H \right |=n$. Xét hai hàm trên $\rho (H)$: $g(A)=f(A)\setminus \left \{ a \right \},h(A)=f(A\cup \left \{ a \right \})\setminus \left \{ a \right \}$. Theo bổ đề 1, hai hàm này tăng, do vậy theo giả thiết quy nạp tồn tại hai tập $A,B\subset H$ sao cho $g(A)=A, h(B)=B$.

Nếu $f(B\cup \left \{ a \right \})=B\cup \left \{ a \right \}$, bài toán đúng với $n+1$.

Nếu $f(B\cup \left \{ a \right \})=B$, xét tập $A\cap B\setminus H$, theo bổ đề 2 ta có $\forall X\subset A\cap B, f(X)\subset A\cap B$, do vậy theo giả thiết quy nạp bài toán đúng với $n+1$.

Bổ đề $4$: $A\subset B\Leftrightarrow C\setminus B\subset C\setminus A$.

Ta quay lại bài toán. Xét hàm $h(X)=f(H\setminus g(H\setminus X))$. Theo bổ đề 4 ta có hàm $h$ tăng. Theo bổ đề 3 ta có $h$ tồn tại điểm bất động $X$. Dễ thấy hai tập $H\setminus g(H\setminus X) ,H\setminus X$ thỏa mãn đề bài.

(Q.E.D)

Bài này lạ quá. Anh lấy ở đâu vậy.

Chứng minh của em chỉ đúng cho tập đếm được . Tập không đếm được không quy nạp được 


Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#4 redfox

redfox

    Trung sĩ

  • Thành viên
  • 100 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:wild animal, furry

Đã gửi 21-10-2016 - 10:21

Ý tưởng của em là chỉ cần xét khoảng $[0;1)$. Xét tập $D_n=\left \{ [0;\frac{1}{2^n});...[1-\frac{1}{2^n};1) \right \}$ và hàm trên $D_n$: $h_n(X)=\bigcup_{A\subset X}f(X),A\subset H$. Ta chứng minh được $h_n$ tăng, theo bổ đề 3 ta được các tập $X_1,X_2,...$ sao cho $h_k(X_k)=X_k$. Ta cũng chứng minh được $X_{k+1}\subset X_k$. Theo bổ đề về dãy các đoạn thẳng lồng nhau, ta chứng minh được tồn tại tập $X$ sao cho $f(X)=X$.

Tại em không biết trình bày mấy cái này, nên em ghi tắt (chắc em cũng lập luận sai ở đâu đó).

Anh học mấy cái này ở đâu vậy?



#5 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1523 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Dốt nhất khoa Toán
  • Sở thích:Unstable homotopy theory

Đã gửi 21-10-2016 - 10:36

Hừm vấn đề em xét đoạn này liên quan gì đến bài toán , anh chỉ nói là chứng minh em cần sửa một chút để nó đúng cho lực lượng không đếm được

Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#6 redfox

redfox

    Trung sĩ

  • Thành viên
  • 100 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:wild animal, furry

Đã gửi 21-10-2016 - 10:50

Không liên quan là sao ạ. Em chứng minh bổ đề 3 với tập không đếm được mà.

#7 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1523 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Dốt nhất khoa Toán
  • Sở thích:Unstable homotopy theory

Đã gửi 21-10-2016 - 12:48

Em mới chỉ chứng minh được cho một loại vô hạn là $R$ , như thế chưa đủ vì luôn có một lực lượng lớn hơn thế rất nhiều

Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#8 redfox

redfox

    Trung sĩ

  • Thành viên
  • 100 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:wild animal, furry

Đã gửi 22-10-2016 - 09:22

$X=\lim_{n\rightarrow \infty }f^n(H)$



#9 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1523 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Dốt nhất khoa Toán
  • Sở thích:Unstable homotopy theory

Đã gửi 22-10-2016 - 10:04

??? Ý em là sao

Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#10 redfox

redfox

    Trung sĩ

  • Thành viên
  • 100 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:wild animal, furry

Đã gửi 22-10-2016 - 11:36

Ta có $f(H)\subset H$ (hiển nhiên), bằng quy nạp $f^{n+1}(H)\subset f^n(H)$. Vậy $f^n(H)$ có giới hạn thỏa $f(X)=X$.

Không biết xài mấy từ này có ổn không.



#11 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1523 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Dốt nhất khoa Toán
  • Sở thích:Unstable homotopy theory

Đã gửi 22-10-2016 - 13:24

Em viết cho anh đầy đủ chứng minh như chứng minh $1$ của em đi

Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.


#12 redfox

redfox

    Trung sĩ

  • Thành viên
  • 100 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:wild animal, furry

Đã gửi 22-10-2016 - 17:25

Bổ đề: Nếu $f$ tăng trên $\rho (H)$ thì $f$ tồn tại một điểm bất động

Xét dãy tập hợp $X_0=H, X_{n+1}=f(X_n)$. Ta sẽ chứng minh bằng quy nạp $X_{n+1} \subset X_n$.

Với $n=0$, ta có $f(H)\subset H$ vì $f(H)$ thuộc $\rho (H)$ nên là tập con của $H$.

Giả sử $X_{n+1}\subset X_n$, theo định nghĩa hàm tăng, $f(X_{n+1})\subset f(X_n)$ hay $X_{n+2}\subset X_{n+1}$

Vậy $X_{n}$ dần tiến về tập $X\subset H$ (đoạn này thấy không ổn nhưng có vẻ đúng với tập hữu hạn). Ta có $f(X)=X$

Rồi làm như phần chứng minh trên.


Bài viết đã được chỉnh sửa nội dung bởi bangbang1412: 22-10-2016 - 21:26


#13 bangbang1412

bangbang1412

    Độc cô cầu bại

  • Phó Quản trị
  • 1523 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Dốt nhất khoa Toán
  • Sở thích:Unstable homotopy theory

Đã gửi 22-10-2016 - 20:01

Anh không biết là có bổ dề dãy hội tụ cho tập hợp hơn nữa em nên nhớ rằng ánh xạ nào cũng có điểm bất động là tập rỗng .


Bài viết đã được chỉnh sửa nội dung bởi bangbang1412: 22-10-2016 - 21:27

Declare to yourself that, from now on, your life is dedicated to one and only one woman, the greatest mistress of your life, the tenderest woman you have ever encountered, Mathematica.





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh