Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Cho $k$ là số nguyên dương. Chứng minh rằng tồn tại các số nguyên $x, y$ không số nào chia hết cho 3 sao cho $x^{2}+3y^{2}=3^{k}.$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Zz Isaac Newton Zz

Zz Isaac Newton Zz

    Sĩ quan

  • Thành viên
  • 395 Bài viết
  • Giới tính:Nam
  • Đến từ:Khoa Toán Tin trường ĐH KHTN TP Hồ Chí Minh
  • Sở thích:Algebraic Topology and Algebraic Geometry

Đã gửi 20-10-2016 - 20:57

Cho $k$ là số nguyên dương. Chứng minh rằng tồn tại các số nguyên $x, y$ không số nào chia hết cho 3 sao cho $x^{2}+3y^{2}=3^{k}.$



#2 Chris yang

Chris yang

    Thượng sĩ

  • Thành viên
  • 223 Bài viết
  • Giới tính:Nữ

Đã gửi 21-10-2016 - 16:39

Cho $k$ là số nguyên dương. Chứng minh rằng tồn tại các số nguyên $x, y$ không số nào chia hết cho 3 sao cho $x^{2}+3y^{2}=3^{k}.$

$x^2=3^k-3y^2$ chắc chắn chia hết cho $3$ rồi còn gì @@



#3 LinhToan

LinhToan

    Thượng sĩ

  • Thành viên
  • 269 Bài viết
  • Giới tính:Nữ
  • Đến từ:Việt Nam
  • Sở thích:TOÁN HỌC

Đã gửi 21-10-2016 - 20:59

nếu vậy k=1 thì x mới ko chia hết cho 3






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh