Đến nội dung


Thông báo

Thời gian vừa qua do diễn đàn gặp một số vấn đề về kĩ thuật nên thỉnh thoảng không truy cập được, mong các bạn thông cảm. Hiện nay vấn đề này đã được giải quyết triệt để. Nếu các bạn gặp lỗi trong lúc sử dụng diễn đàn, xin vui lòng thông báo cho Ban Quản Trị.


Hình ảnh

Tuần 1 tháng 11/2016 : Trục đẳng phương đi qua giao điểm

hình học

  • Please log in to reply
Chủ đề này có 3 trả lời

#1 baopbc

baopbc

    Himura Kenshin

  • Thành viên nổi bật 2016
  • 410 Bài viết
  • Giới tính:Không khai báo

Đã gửi 31-10-2016 - 18:02

Như vậy thầy Hùng đã đưa ra lời giải bài cũ trong tuần 5 tháng 10 và kèm theo đó là bài toán mới, xin trích dẫn lại bài toán mới,

 

Cho tam giác $ABC$ nội tiếp đường tròn $(O)$. Tiếp tuyến tại $B,C$ của $(O)$ cắt nhau tại $T$. $D$ là một điểm trên cạnh $BC$. $TD$ cắt $(TBC)$ tại $P$ khác $T$. $K$ thuộc $BC$ sao cho $AK\parallel PD$. $L$ thuộc $AK$ sao cho $DL\parallel AP$. Chứng minh rằng trục đẳng phương của đường tròn $(DKL)$ và $(TBC)$ đi qua giao điểm của $KP$ và $AD$.

Post 356.PNG

Hình vẽ bài toán



#2 proram013

proram013

    Lính mới

  • Thành viên
  • 5 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:Nothing

Đã gửi 31-10-2016 - 18:55

mình xin đóng góp 1 cách giải

14874841_311149235934343_1726037029_n.png



#3 proram013

proram013

    Lính mới

  • Thành viên
  • 5 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội
  • Sở thích:Nothing

Đã gửi 31-10-2016 - 18:57

mình xin đóng góp 1 cách giải  :icon6: 

14874841_311149235934343_1726037029_n.png


Bài viết đã được chỉnh sửa nội dung bởi proram013: 31-10-2016 - 18:57


#4 Ngockhanh99k48

Ngockhanh99k48

    Trung sĩ

  • Thành viên
  • 127 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Ninh

Đã gửi 31-10-2016 - 20:45

Một hướng đi gần giống:
$AK$ cắt $(O)$ tại $E$. $PK$ cắt $(BOC)$ tại $F$. Ta có $\overline{KE}.\overline{KA}=\overline{KB}.\overline{KC}=\overline{KP}.\overline{KF}$ nên $A, P, E, F$ đồng viên. Do đó $\widehat{PAK}=\widehat{PFA}$ (vì $PA=PE$). Suy ra $PA$ là tiếp tuyến của $(AKF)$.
$AP$ cắt $(BOC)$ tại $Q$. $QF, PE$ cắt $BC$ tại $M, N$. Do $AK \parallel PT$ nên $PT$ là phân giác của góc $\widehat{EPQ}$. Nếu $PE$ cắt $(BOC)$ tại $S$ thì $SQ \parallel BC$. Bằng cộng các cung chứa góc của đường tròn $(BOC)$ suy ra $\widehat{PFQ}=\widehat{ENM}$ hay $M, F, N, P$ đồng viên. Suy ra $\widehat{QMN}=\widehat{FPE}=\widehat{FAK}$ do đó $A, K, F, M$ đồng viên.
$(AKM)$ cắt $AD$ tại $Z$ thì ta có $\widehat{KLD}=\widehat{KAP}=\widehat{AMK}=\widehat{KZD}$ nên $Z \in (KLD)$. Do đó $\widehat{ZFP}=\widehat{DAK}=\widehat{ZDP}$ hay $Z, F, P, D$ đồng viên. Đến đây ta có đpcm.

Bài viết đã được chỉnh sửa nội dung bởi Ngockhanh99k48: 31-10-2016 - 20:48






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: hình học

0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh