S= + +...+ .Tính tổng S
Bài viết đã được chỉnh sửa nội dung bởi Korosensei: 04-11-2016 - 19:43
Đã gửi 04-11-2016 - 19:39
S= + +...+ .Tính tổng S
Bài viết đã được chỉnh sửa nội dung bởi Korosensei: 04-11-2016 - 19:43
Đã gửi 05-01-2017 - 19:21
S= + +...+ .Tính tổng S
Đề bài của bạn sao lại không hiển thị vậy?
Đã gửi 05-01-2017 - 19:23
Tính tổng A=1.3+3.5+5.7+...+2017.2019
$\Leftrightarrow$A=(2-1)(2+1)+(4-1)(4+1)+(6-1)(6+1)+...+(2018-1)(2018+1)
Mình làm thế này không biết có đúng không nhỉ?
Đã gửi 06-01-2017 - 09:03
Ta thử nghĩ theo hướng khác thử:
6A = .1.3.6+.3.5.6+5.7.6+...+2015.2017.6
6A = 1.3.5 - 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 2015.2017.2019 - 2013.2015.2017
$A=\frac{2015.2017.2019-1.3}{6}$
A=...
Cách này có ổn không.
Đã gửi 06-01-2017 - 20:46
Ta thử nghĩ theo hướng khác thử:
6A = .1.3.6+.3.5.6+5.7.6+...+2015.2017.6
6A = 1.3.5 - 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 2015.2017.2019 - 2013.2015.2017
$A=\frac{2015.2017.2019-1.3}{6}$
A=...
Cách này có ổn không.
Chắc là được đó bạn, mình cũng không rõ lắm.
Đã gửi 06-01-2017 - 20:48
1.Cho: x+y=1. Tìm Min:M=$(x^{2}+\frac{1}{y^{2}})(y^{2}+\frac{1}{x^{2}})$.
2. Cho: a,b,c thỏa mãn abc=2015. Tính giá trị biểu thức:
P=$\frac{2015a}{ab+2015a+2015}$+$\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}$
Bài viết đã được chỉnh sửa nội dung bởi huykietbs: 06-01-2017 - 21:17
Đã gửi 07-01-2017 - 12:37
2. Cho: a,b,c thỏa mãn abc=2015. Tính giá trị biểu thức:
P=$\frac{2015a}{ab+2015a+2015}$+$\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}$
Ta có
$P=\frac{a^{2}bc}{ab+a^{2}bc+abc}+\frac{b}{bc+b+abc} +\frac{c}{ac+c+1}= \frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}= 1$
Bài viết đã được chỉnh sửa nội dung bởi tienduc: 07-01-2017 - 12:48
Đã gửi 07-01-2017 - 12:47
1.Cho: x+y=1. Tìm Min:M=$(x^{2}+\frac{1}{y^{2}})(y^{2}+\frac{1}{x^{2}})$.
Ta có $M=x^{2}y^{2}+\frac{1}{x^{2}y^{2}}+2=x^{2}y^{2}+\frac{1}{256x^{2}y^{2}}+\frac{255}{256x^{2}y^{2}}+2$
Áp dụng BĐT $cauchy$ có $x^{2}y^{2}+\frac{1}{256x^{2}y^{2}}\geq \frac{1}{8}$
$xy\leq \frac{(x+y)^{2}}{4}= \frac{1}{4}\rightarrow x^{2}y^{2}\geq \frac{1}{16}$
Cộng vế $\rightarrow M\geq \frac{289}{16}$
Đã gửi 08-01-2017 - 20:54
Ta thử nghĩ theo hướng khác thử:
6A = .1.3.6+.3.5.6+5.7.6+...+2015.2017.6
6A = 1.3.5 - 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 2015.2017.2019 - 2013.2015.2017
$A=\frac{2015.2017.2019-1.3}{6}$
A=...
Cách này có ổn không.
Có một chút nhầm lẫn !
$6A=1.3.6+3.5.6+5.7.6+...+2017.2019.6$
$6A=1.3.5+1.3.1+3.5.7-1.3.5+5.7.9-3.5.7+...+2017.2019.2021-2015.2017.2019$
$\Rightarrow A=\frac{2017.2019.2021+3}{6}$ (1)
Cách khác :
$A=(2-1)(2+1)+(4-1)(4+1)+(6-1)(6+1)+...+(2018-1)(2018+1)$
$A=(2^2+4^2+6^2+...+2018^2)-1009=4(1^2+2^2+...+1009^2)-1009$
$A=4.\frac{1009.1010.2019}{6}-1009=\frac{2018.2019.2020}{6}-1009$
$A=\frac{2018.2019.2020-1009.6}{6}=\frac{2018.(2019.2020-3)}{6}$ (2)
(Dễ dàng chứng minh 2 kết quả (1) và (2) là bằng nhau)
...
Ðêm nay tiễn đưa
Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...
Đã gửi 09-01-2017 - 20:15
Có một chút nhầm lẫn !
$6A=1.3.6+3.5.6+5.7.6+...+2017.2019.6$
$6A=1.3.5+1.3.1+3.5.7-1.3.5+5.7.9-3.5.7+...+2017.2019.2021-2015.2017.2019$
$\Rightarrow A=\frac{2017.2019.2021+3}{6}$ (1)
Cách khác :
$A=(2-1)(2+1)+(4-1)(4+1)+(6-1)(6+1)+...+(2018-1)(2018+1)$
$A=(2^2+4^2+6^2+...+2018^2)-1009=4(1^2+2^2+...+1009^2)-1009$
$A=4.\frac{1009.1010.2019}{6}-1009=\frac{2018.2019.2020}{6}-1009$
$A=\frac{2018.2019.2020-1009.6}{6}=\frac{2018.(2019.2020-3)}{6}$ (2)
(Dễ dàng chứng minh 2 kết quả (1) và (2) là bằng nhau)
Cảm ơn. Nhưng cho hỏi chỗ:
$A=(2^2+4^2+6^2+...+2018^2)-1009=4(1^2+2^2+...+1009^2)-1009$
$A=4.\frac{1009.1010.2019}{6}-1009=\frac{2018.2019.2020}{6}-1009$
Làm sao suy ra được
0 thành viên, 2 khách, 0 thành viên ẩn danh