Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$\frac{b+c}{a} + \frac{c+a}{b}+ \frac{a+b}{c} \geq 4(\frac{a}{b+c} +\frac{b}{c+a} + \frac{c}{a+b})$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 hoangquochung3042002

hoangquochung3042002

    Trung sĩ

  • Thành viên
  • 189 Bài viết
  • Giới tính:Nam
  • Đến từ:Đắk Lắk
  • Sở thích:MATH.

Đã gửi 24-11-2016 - 14:11

đây là 1 bài khó và mình đã cố gắng suy nghĩ hết sức, mong ai biết câu này giải giùm mình.

 

            Cho $a, b, c$ là các số thực dương. Chứng minh rằng ta có bất đẳng thức:

$\frac{b+c}{a} + \frac{c+a}{b}+  \frac{a+b}{c} \geq 4(\frac{a}{b+c} +\frac{b}{c+a} + \frac{c}{a+b})$

Giup mình với nhé. Cảm ơn các bạn nhiều.


Bài viết đã được chỉnh sửa nội dung bởi tpdtthltvp: 24-11-2016 - 18:04


#2 anh1999

anh1999

    Sĩ quan

  • Thành viên
  • 355 Bài viết
  • Giới tính:Nam
  • Đến từ:Trường THPT lê hữu Trác-Hương sơn-Hà tĩnh

Đã gửi 24-11-2016 - 19:13

đây là 1 bài khó và mình đã cố gắng suy nghĩ hết sức, mong ai biết câu này giải giùm mình.

 

            Cho $a, b, c$ là các số thực dương. Chứng minh rằng ta có bất đẳng thức:

$\frac{b+c}{a} + \frac{c+a}{b}+  \frac{a+b}{c} \geq 4(\frac{a}{b+c} +\frac{b}{c+a} + \frac{c}{a+b})$

Giup mình với nhé. Cảm ơn các bạn nhiều.

$\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}=b(\frac{1}{a}+\frac{1}{c})+a(\frac{1}{b}+\frac{1}{c})+c(\frac{1}{a}+\frac{1}{b})$

$\geq \frac{4b}{a+c}+\frac{4a}{b+c}+\frac{4c}{a+b}$


Trần Quốc Anh





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh