Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$QF$ tiếp xúc với $(CFM)$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 Kamii0909

Kamii0909

    Trung sĩ

  • Thành viên
  • 158 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Huệ
  • Sở thích:Mathematic, Light Novel

Đã gửi 23-12-2016 - 23:54

Cho hình vuông $ABCD$ nội tiếp $(O)$ và điểm $E$ trên cạnh $CD$. $AE$ cắt $BC$ tại $G$. $BE$ cắt $(O)$ tại $F$. Lấy $M \neq F$ trên $BE$ sao cho $GM=GF$. Gọi $N$ là trung điểm $BC$. $MN$ cắt $CD$ tại $Q$. Chứng minh rằng $QF$ tiếp xúc với $(CFM)$.

#2 ecchi123

ecchi123

    Trung sĩ

  • Thành viên
  • 177 Bài viết
  • Giới tính:Nam
  • Đến từ:Hoàng Văn Thụ - Hòa bình
  • Sở thích:Hình , Dragonball

Đã gửi 24-12-2016 - 11:41

nếu có $GC=GF$ ta suy ra $\widehat{CGM}=180^o-2\widehat{BFC}=90^o ,$ , từ $M$ kể tiếp tuyến $Mx$ của $(G)$ thì có hàng $M(xNBC=-1$ , suy ra $FQ$ tiếp xúc $(G)$ . Bây giờ ta đy chứng min $GF=GC$ , ta có$\frac{DF}{FC}=\frac{Sin\widehat{DBE}}{Sin\widehat{EBC}}=\frac{DE}{DB}.\frac{BC}{EC}=\frac{FO}{DG}$ suy ra tam giác $ODF$ đồng dạng $GCF$ suy ra tam giác $GFC$ cân tại $G$ suy ra $GF=GC$ suy ra dpcm


~O) ~O) ~O)

#3 Kamii0909

Kamii0909

    Trung sĩ

  • Thành viên
  • 158 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Huệ
  • Sở thích:Mathematic, Light Novel

Đã gửi 24-12-2016 - 20:45

nếu có $GC=GF$ ta suy ra $\widehat{CGM}=180^o-2\widehat{BFC}=90^o ,$ , từ $M$ kể tiếp tuyến $Mx$ của $(G)$ thì có hàng $M(xNBC=-1$ , suy ra $FQ$ tiếp xúc $(G)$ . Bây giờ ta đy chứng min $GF=GC$ , ta có$\frac{DF}{FC}=\frac{Sin\widehat{DBE}}{Sin\widehat{EBC}}=\frac{DE}{DB}.\frac{BC}{EC}=\frac{FO}{DG}$ suy ra tam giác $ODF$ đồng dạng $GCF$ suy ra tam giác $GFC$ cân tại $G$ suy ra $GF=GC$ suy ra dpcm

Bạn chỉ rõ cho mình tại sao $\frac{BC}{EC}.\frac{DE}{DB}=\frac{FO}{DG}$ được không? Bạn viết hơi tắt khúc này.

#4 ecchi123

ecchi123

    Trung sĩ

  • Thành viên
  • 177 Bài viết
  • Giới tính:Nam
  • Đến từ:Hoàng Văn Thụ - Hòa bình
  • Sở thích:Hình , Dragonball

Đã gửi 25-12-2016 - 10:46

VT=$\frac{DE}{EC}.\frac{BC}{BD}=\frac{AD.BC}{BD.GC}=\frac{AD}{\sqrt{2}CG}=\frac{DO}{GC}$  , chết , mình viết lộn , cái chỗ $GD$ ở cuối thay bằng $GC$ nhà , thế mới ra dc 2 cái đồng dạng  :lol:  :lol:


~O) ~O) ~O)




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh