Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$x^2+y^2+z^2=p.t$


  • Please log in to reply
Chủ đề này có 3 trả lời

#1 royal1534

royal1534

    Trung úy

  • Thành viên
  • 773 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng
  • Sở thích:VMF!

Đã gửi 08-01-2017 - 04:40

Bài toán 1: Cho $p$ là số nguyên tố. Chứng minh tồn tại các số $x,y,z,t$ thỏa mãn :

$x^2+y^2+z^2=p.t$ (Với $0<t<p$)

Bài toán 2: Cho các số nguyên $a,b,c$ lớn hơn 1. Chứng minh rằng nếu với mỗi số nguyên dương $n$, tồn tại $k$ sao cho $a^k+b^k=2c^n$ thì $a=b$

Bài toán 3: Cho a,b,c là các số nguyên và $a \neq 0$ sao cho $an^2+bn+c$ là số chính phương với mọi $n>2013^{2014}$.

Chứng minh rằng tồn tại $x,y$ nguyên sao cho : $a=x^2,b=2xy,c=y^2$



#2 nhungvienkimcuong

nhungvienkimcuong

    Sĩ quan

  • Thành viên
  • 463 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Nguyễn Du-Daklak
  • Sở thích:đã từng có

Đã gửi 08-01-2017 - 07:09

Bài toán 1: Cho $p$ là số nguyên tố. Chứng minh tồn tại các số $x,y,z,t$ thỏa mãn :

$x^2+y^2+z^2=p.t$ (Với $0<t<p$)

 

 

ta chỉ cần xét $x,y,z$ theo $\left ( \mod\ p \right )$ và khi thay $x$ bởi $p-x$ nên ta chỉ cần xét với $x,y,z< \frac{p}{2}$

Đặt $\mathcal{S}$ là tập bình phương các số dư thì khi đó $\left | \mathcal{S} \right |=\frac{p+1}{2}$

theo định lý $\text{Cauchy-Dacenport}$ ta có

$\left | \mathcal{S}+\mathcal{S}+\mathcal{S} \right |\geq \min\left \{ p,3\left | \mathcal{S} \right |-2 \right \}=\min\left \{ p,3.\frac{p+1}{2}-2 \right \}=p$

do đó 

$\exists t_p:x^2+y^2+z^2=pt_p$

$\Rightarrow t_p=\frac{x^2+y^2+z^2}{p}<\frac{3.\left ( \frac{p}{2} \right )^2}{p}$

do đó ta chỉ cần chọn $t=t_p$

 

Bài toán 2: Cho các số nguyên $a,b,c$ lớn hơn 1. Chứng minh rằng nếu với mỗi số nguyên dương $n$, tồn tại $k$ sao cho $a^k+b^k=2c^n$ thì $a=b$

File gửi kèm  analysis against number theory.pdf   183.25K   164 Số lần tải

em xem ở $\text{Example}\ 3$ nhé

 

Bài toán 3: Cho a,b,c là các số nguyên và $a \neq 0$ sao cho $an^2+bn+c$ là số chính phương với mọi $n>2013^{2014}$.

Chứng minh rằng tồn tại $x,y$ nguyên sao cho : $a=x^2,b=2xy,c=y^2$

đây là bài toán khá nổi tiếng

em có thể tham khảo $\text{Example}\ 2$ cùng file trên và cũng một lời giải khác ở đây,ý nghĩa bài toán nó đơn thuần chỉ cần vô hạn và phủ nên 2 lời giải trên đều có thể dùng được


Đừng khóc vì chuyện đã kết thúc hãy cười vì chuyện đã xảy ra  ~O) 

Thật kì lạ anh không thể nhớ đến tên mình mà chỉ nhớ đến tên em  :wub: 

Chúa tạo ra vũ trụ của con người còn em tạo ra vũ trụ của anh  :ukliam2: 


#3 I Love MC

I Love MC

    Đại úy

  • Thành viên
  • 1864 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Quốc Học
  • Sở thích:Number theory,Combinatoric

Đã gửi 11-03-2017 - 14:32

Bài 1 có cách khác đơn giản như này
với $p=2$ thì dễ có đpcm 
$p>2$ . Xét $2$ tập $A=\{x^2\},x \in \{1,2,..,\frac{p-1}{2}\},B=\{-1-y^2},y \in \{1,2,..,\frac{p-1}{2}\}$
Dễ chứng minh các phân tử của $A$ và $B$ đôi một phân biệt modulo $p$. Chú ý $cardA+cardB=p+1>p$ 
Nên tồn tại $x_0 \in A,y_0 \in B$ sao cho $x_0^2 \equiv -1-y_0^2 \mod{p}$ 
Dễ chứng minh $\frac{x_0^2+y_0^2+1}{p}<p$ từ đó chọn $x_0=x,y_0=y,z=1$



#4 ngocanh69

ngocanh69

    Lính mới

  • Thành viên mới
  • 4 Bài viết

Đã gửi 13-09-2018 - 03:54

 \displaystyle{A=\{x^2\},x \in \{1,2,..,\frac{p-1}{2}\},B=\{-1-y^2},y \in \{1,2,..,\frac{p-1}{2}\}}\displaystyle{A=\{x^2\},x \in \{1,2,..,\frac{p-1}{2}\},B=\{-1-y^2},y \in \{1,2,..,\frac{p-1}{2}\}}

 






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh