Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

$\sum (a^3-b^3)^2 \geq 3abc(a-b)(b-c)(c-a)$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Kamii0909

Kamii0909

    Trung sĩ

  • Thành viên
  • 158 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Huệ
  • Sở thích:Mathematic, Light Novel

Đã gửi 13-02-2017 - 02:50

Cho $a,b,c$ là các số thực thỏa mãn $a^5b+b^5c+c^5a=a^4b^2+b^4c^2+c^4a^2$
Chứng minh rằng
$(a^3-b^3)^2+(b^3-c^3)^2+(c^3-a^3)^2 \geq 6abc(a-b)(b-c)(c-a)$

Bài viết đã được chỉnh sửa nội dung bởi Kamii0909: 13-02-2017 - 02:50


#2 Nguyenhuyen_AG

Nguyenhuyen_AG

    Trung úy

  • Hiệp sỹ
  • 945 Bài viết
  • Giới tính:Nam

Đã gửi 13-02-2017 - 14:08

Cho $a,b,c$ là các số thực thỏa mãn $a^5b+b^5c+c^5a=a^4b^2+b^4c^2+c^4a^2$
Chứng minh rằng
$(a^3-b^3)^2+(b^3-c^3)^2+(c^3-a^3)^2 \geq 6abc(a-b)(b-c)(c-a)$

 

Bất đẳng thức vẫn đúng mà không cần điều kiện $a^5b+b^5c+c^5a=a^4b^2+b^4c^2+c^4a^2.$


Nguyen Van Huyen
Ho Chi Minh City University Of Transport

#3 Kamii0909

Kamii0909

    Trung sĩ

  • Thành viên
  • 158 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Huệ
  • Sở thích:Mathematic, Light Novel

Đã gửi 13-02-2017 - 18:30

Bất đẳng thức vẫn đúng mà không cần điều kiện $a^5b+b^5c+c^5a=a^4b^2+b^4c^2+c^4a^2.$

Anh cho em tham khảo lời giải tổng quát? Và đặc biệt là hằng số tốt nhất. E có thử tìm nhưng nó khá là khó và chỉ dừng ở 6.
Em có thử với $a^5b+b^5c+c^5a \geq a^4b^2+b^4c^2+c^4a^2$ và cũng đã chứng minh được bất đẳng thức đúng tuy nhiên chưa làm được phần còn lại.




0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh