Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Tìm $lim\frac{\sqrt{5-x^3}-\sqrt[3]{x^2 +7}-2}{x^2-1}$


  • Please log in to reply
Chủ đề này có 14 trả lời

#1 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 21-02-2017 - 08:25

Tìm $lim\frac{\sqrt{5-x^3}-\sqrt[3]{x^2 +7}-2}{x^2-1}$ ($lim x\rightarrow 1$)

Mk ko thạo gõ công thức cho lắ[email protected]@ Mong mọi người thông cảm!


Bài viết đã được chỉnh sửa nội dung bởi Chika Mayona: 24-02-2017 - 17:27

Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#2 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1811 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 21-02-2017 - 10:55

Tìm $lim\frac{\sqrt{5-x^3}-\sqrt[3]{x^2 +7}-2}{x^2-1}$ ($lim x\rightarrow 1$)

Mk ko thạo gõ công thức cho lắ[email protected]@ Mong mọi người thông cảm!

 

Ta có thể nhận ra giới hạn không xác định bằng cách  thế $x=1$ vào tử và mẫu. Sau đó dùng giới hạn hai phía để chứng minh.


Đời người là một hành trình...


#3 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 24-02-2017 - 07:49

Ta có thể nhận ra giới hạn không xác định bằng cách  thế $x=1$ vào tử và mẫu. Sau đó dùng giới hạn hai phía để chứng minh.

Bạn có thể trình bày chi tiết ra hộ mk được ko? Tại bây giờ mk đang mất gốc mấy dạng này á ^^


Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#4 Thuat ngu

Thuat ngu

    Trung sĩ

  • Thành viên
  • 194 Bài viết
  • Giới tính:Nữ
  • Đến từ:Một nơi rất xa
  • Sở thích:gõ Latex mặc dù không thạo :v

Đã gửi 24-02-2017 - 09:02

Tìm $lim\frac{\sqrt{5-x^3}-\sqrt[3]{x^2 +7}-2}{x^2-1}$ ($lim x\rightarrow 1$)

Mk ko thạo gõ công thức cho lắ[email protected]@ Mong mọi người thông cảm!

Mình xin đề xuất một hướng giải: Do mẫu thức là $x^{2}-1$ nên ta không thể thay x=1 vào được. Ta nghĩ đến việc khử nhân tử x-1 ở mẫu bằng cách phân tích tử số sao cho có chứa nhân tử x-1, cách làm như sau:

TS <=> $\left ( \sqrt{5-x^{3}} -\sqrt{5-x}\right )+(2-\sqrt[3]{x^{2}+7})+(\sqrt{5-x}-4)$.

Đến đây bạn cứ nhân liên hợp ra là xuất hiện nhân tử x-1. Sau đó chia cả tử và mẫu cho x-1 rồi thay x=1 vào là tìm được giới hạn.

P/s: Mình hơi ngại gõ nên làm hơi tắt, có gì mong mọi người thông cảm!



#5 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1811 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 24-02-2017 - 12:39

$(\sqrt{5-x}-4)$.

 

Em cần kiểm tra lại số hạng này!!!!

 

Giới hạn này có dạng (-2)/0. 


Đời người là một hành trình...


#6 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 24-02-2017 - 15:13

Mình xin đề xuất một hướng giải: Do mẫu thức là $x^{2}-1$ nên ta không thể thay x=1 vào được. Ta nghĩ đến việc khử nhân tử x-1 ở mẫu bằng cách phân tích tử số sao cho có chứa nhân tử x-1, cách làm như sau:

TS <=> $\left ( \sqrt{5-x^{3}} -\sqrt{5-x}\right )+(2-\sqrt[3]{x^{2}+7})+(\sqrt{5-x}-4)$.

Đến đây bạn cứ nhân liên hợp ra là xuất hiện nhân tử x-1. Sau đó chia cả tử và mẫu cho x-1 rồi thay x=1 vào là tìm được giới hạn.

P/s: Mình hơi ngại gõ nên làm hơi tắt, có gì mong mọi người thông cảm!

Xin lỗi nhưng mk vẫn chưa hiểu ý của bạn cho lắm ... Hình như có cái gì đó sai sai @@

 

Em cần kiểm tra lại số hạng này!!!!

 

Giới hạn này có dạng (-2)/0. 

Anh cho em hỏi là nếu mk sử dụng phương pháp gọi số hạng vắng ở đây có được ko ạ?Nếu được thì cho em hỏi luôn là tại sao e làm hoài vẫn ko thể khử được mẫu ... mà khi khử được thì kết quả khác xa với mấy đứa cùng lớp luôn @@


Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#7 Chika Mayona

Chika Mayona

    Thượng sĩ

  • Thành viên
  • 281 Bài viết
  • Giới tính:Nữ
  • Đến từ:Nana Land
  • Sở thích:Nothing

Đã gửi 24-02-2017 - 17:26

Cho mk xin lỗi nha ... Mk ghi nhầm đề rồi @@ Đề đúng là thế này ... xin lỗi đã phiền mọi người @@

 

Tìm $lim\frac{\sqrt{5-x^3}-\sqrt[3]{x^2 +7}}{x^2-1}$ ($lim x\rightarrow 1$)

 


Hãy cứ bước đi, hãy cứ vấp ngã và tiếp tục đứng dậy, tiếp tục trưởng thành !!! 


#8 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1811 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 24-02-2017 - 17:54

Cho mk xin lỗi nha ... Mk ghi nhầm đề rồi @@ Đề đúng là thế này ... xin lỗi đã phiền mọi người @@

Thế em đã xử nó xong rồi phải không?


Đời người là một hành trình...


#9 Thuat ngu

Thuat ngu

    Trung sĩ

  • Thành viên
  • 194 Bài viết
  • Giới tính:Nữ
  • Đến từ:Một nơi rất xa
  • Sở thích:gõ Latex mặc dù không thạo :v

Đã gửi 24-02-2017 - 18:01

Cho mk xin lỗi nha ... Mk ghi nhầm đề rồi @@ Đề đúng là thế này ... xin lỗi đã phiền mọi người @@

Vẫn hướng đi cũ: TS = $(\sqrt{5-x^{3}}-\sqrt{5-x})+(2-\sqrt{x^{2}-7})+(\sqrt{5-x}-2)$. Đến đây bạn nhân liên hợp vào sẽ được nhân tử x-1 và khử nó với mẫu rồi thay x=1 vào là tìm được lim



#10 Thuat ngu

Thuat ngu

    Trung sĩ

  • Thành viên
  • 194 Bài viết
  • Giới tính:Nữ
  • Đến từ:Một nơi rất xa
  • Sở thích:gõ Latex mặc dù không thạo :v

Đã gửi 24-02-2017 - 18:03

Thế em đã xử nó xong rồi phải không?

Anh vanchanh123, hướng giải của em hơi dài, anh có cách làm khác k?



#11 leminhnghiatt

leminhnghiatt

    Thượng úy

  • Thành viên
  • 1078 Bài viết
  • Giới tính:Nam
  • Đến từ:$\color{blue}{\text{THPT Thanh Thủy}}$
  • Sở thích:$\color{Blue}{\text{Bầu trời xanh của tôi}}$

Đã gửi 24-02-2017 - 21:19

Vẫn hướng đi cũ: TS = $(\sqrt{5-x^{3}}-\sqrt{5-x})+(2-\sqrt{x^{2}-7})+(\sqrt{5-x}-2)$. Đến đây bạn nhân liên hợp vào sẽ được nhân tử x-1 và khử nó với mẫu rồi thay x=1 vào là tìm được lim

Thực ra cậu k cần thêm hạng tử $\sqrt{5-x}$ vào, có lẽ không thêm vào bài làm sẽ đơn giản đi

Tử số chỉ tách như này là đủ:

$(\sqrt{5-x^3}-2)+(2-\sqrt[3]{x^2+7})=\dfrac{(1-x)(x^2+x+1)}{\sqrt{5-x^3}+2}+\dfrac{(1-x)(1+x)}{4+\sqrt[3]{x^2+7}+\sqrt[3]{x^2+7}^2}$

Tới đây khử đc $(x-1)$ ở tử và mẫu ....


Bài viết đã được chỉnh sửa nội dung bởi leminhnghiatt: 24-02-2017 - 21:20

Don't care


#12 An Infinitesimal

An Infinitesimal

    Đại úy

  • Thành viên
  • 1811 Bài viết
  • Giới tính:Nam
  • Đến từ:cù lao
  • Sở thích:~.*

Đã gửi 24-02-2017 - 22:31

Vẫn hướng đi cũ: TS = $(\sqrt{5-x^{3}}-\sqrt{5-x})+(2-\sqrt{x^{2}-7})+(\sqrt{5-x}-2)$. Đến đây bạn nhân liên hợp vào sẽ được nhân tử x-1 và khử nó với mẫu rồi thay x=1 vào là tìm được lim

Vấn đề em đặt ra đã được leminhnghiatt giải quyết.

 

Để tìm hiểu thêm thông tin, tại sao từ đầu em cố gắng chèn vô cái căn bậc hai nhỉ?


Đời người là một hành trình...


#13 Thuat ngu

Thuat ngu

    Trung sĩ

  • Thành viên
  • 194 Bài viết
  • Giới tính:Nữ
  • Đến từ:Một nơi rất xa
  • Sở thích:gõ Latex mặc dù không thạo :v

Đã gửi 24-02-2017 - 22:39

Vấn đề em đặt ra đã được leminhnghiatt giải quyết.

 

Để tìm hiểu thêm thông tin, tại sao từ đầu em cố gắng chèn vô cái căn bậc hai nhỉ?

À, lúc đầu em muốn cho xuất hiện nhân tử $x^{2}-1$ để mất sạch mẫu nhưng không thành công, xong cứ nghĩ hướng tách đấy nên thành ra dài dòng ^^ 



#14 nguyenthanhhung1985

nguyenthanhhung1985

    Hạ sĩ

  • Thành viên
  • 86 Bài viết
  • Giới tính:Nam
  • Đến từ:Phước Lộc - Tuy Phước - Bình Định
  • Sở thích:đánh cờ

Đã gửi 30-06-2017 - 19:09

Bạn thế $x=1$ vào tử thì tử số bằng -2. Bạn thế $x=1$ vào mẫu số thì mẫu số bằng 0. Bạn chỉ cần kiểm tra giới hạn bên trái 1 và bên phải của 1 thì em sẽ có ngay kết quả ah. Nếu bạn chưa hiểu thì mình sẽ gửi bài giải cụ thể cho bạn sau.

Nguyễn Thành Hưng


#15 nguyenthanhhung1985

nguyenthanhhung1985

    Hạ sĩ

  • Thành viên
  • 86 Bài viết
  • Giới tính:Nam
  • Đến từ:Phước Lộc - Tuy Phước - Bình Định
  • Sở thích:đánh cờ

Đã gửi 30-06-2017 - 22:14

Tìm $\lim_{x \rightarrow 1} \frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}-2}{x^2-1}$

Ta có: 

$\lim_{x \rightarrow 1} (\sqrt{5-x^3}-\sqrt[3]{x^2+7}-2)=-2$

$\lim_{x \rightarrow 1} (x^2-1)=0$

$x>1 \Rightarrow x^2-1>0$

Nên $\lim_{x \rightarrow 1^{+}} \frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}-2}{x^2-1}=-\infty$

Ta có:
$\lim_{x \rightarrow 1} (\sqrt{5-x^3}-\sqrt[3]{x^2+7}-2)=-2$
$\lim_{x \rightarrow 1} (x^2-1)=0$
$x<1 \Rightarrow x^2-1<0$
Nên $\lim_{x \rightarrow 1^{-}} \frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}-2}{x^2-1}=+\infty$

 Từ trên ta đến kết luận không tồn tại giới hạn tại điểm $x=1$


Bài viết đã được chỉnh sửa nội dung bởi nguyenthanhhung1985: 30-06-2017 - 22:17

Nguyễn Thành Hưng





2 người đang xem chủ đề

0 thành viên, 2 khách, 0 thành viên ẩn danh