Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

$(a+b)^2(b+c)^2(a+c)^2\geq abc(a+2b+c)(a+2c+b)(2a+b+c)$


  • Please log in to reply
Chủ đề này có 4 trả lời

#1 yeutoan2001

yeutoan2001

    Thượng sĩ

  • Thành viên
  • 231 Bài viết

Đã gửi 02-03-2017 - 16:25

CRUX

$(a+b)^2(b+c)^2(a+c)^2\geq abc(a+2b+c)(a+2c+b)(2a+b+c)$



#2 tritanngo99

tritanngo99

    Đại úy

  • Thành viên
  • 1756 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng
  • Sở thích:$\href{https://www.youtube.com/watch?v=YNlEDsIQxWU}{Đây}$

Đã gửi 02-03-2017 - 20:05

CRUX

$(a+b)^2(b+c)^2(a+c)^2\geq abc(a+2b+c)(a+2c+b)(2a+b+c)$

Đặt $(p;q;r)\implies (\sum a;\sum ab;abc)$.

Chuẩn hóa: $p=1$.

Khi đó ta có: $q\le \frac{1}{3},q^2\ge 3r$.

Lúc này bất đẳng thức đã cho tương đương: $[\prod{(1-a)}]^2\ge r\prod{(1+a)}$

$\iff (q-r)^2\ge r(2+q+r)\iff q^2-3qr-2r\ge 0$.

Thật vậy: Ta có: $q^2\ge 3r\implies q^2-3qr-2r\ge r-3qr=r(1-3q)\ge 0(TRUE)\implies Q.E.D$.

Dấu $=$ xảy ra tại $a=b=c$


Yêu quê hương thương nhân loại núi sông cảm mến
Hiểu Thánh triết biết nghĩa nhân trời đất chở che

#3 royal1534

royal1534

    Trung úy

  • Thành viên
  • 773 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng
  • Sở thích:VMF!

Đã gửi 02-03-2017 - 20:22

CRUX

$(a+b)^2(b+c)^2(a+c)^2\geq abc(a+2b+c)(a+2c+b)(2a+b+c)$

Một lời giải khác : 
Đặt $a+b=x,b+c=y,a+c=z$
Ta quy bài toán về chứng minh 
$8x^2y^2z^2 \geq (x+y-z)(z+x-y)(y+z-x)(x+y)(y+z)(z+x)$
Ta dễ chứng minh bất đẳng thức phụ sau (chỉ cần biến đổi tương đương) : 
$\frac{(x+y+z)(x^2+y^2+z^2)}{9} \geq \frac{(x+y)(y+z)(z+x)}{8}$  
Ta quy bài toán về chứng minh: 
$9x^2y^2z^2 \geq (x+y-z)(z+x-y)(y+z-x)(x+y+z)(x^2+y^2+z^2)$ 
$\Leftrightarrow \frac{9x^2y^2z^2}{x^2+y^2+z^2} \geq (x+y-z)(x+z-y)(y+z-x)(x+y+z)$
$\Leftrightarrow \frac{9x^2y^2z^2}{x^2+y^2+z^2} \geq 2(x^2y^2+y^2z^2+z^2x^2)-(x^4+y^4+z^4)$ (Đúng theo BĐT Schur)
Ta có điều phải chứng minh



#4 Kamii0909

Kamii0909

    Trung sĩ

  • Thành viên
  • 158 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Huệ
  • Sở thích:Mathematic, Light Novel

Đã gửi 03-03-2017 - 01:10

Xét $3(a+b)^2(b+c)^2(c+a)^2-3abc(a+b+2c)(b+c+2a)(c+a+2b)=q^2(p^2-3q)+(3q+2p^2)(q^2-3pr) \geq 0$



#5 Nguyenhuyen_AG

Nguyenhuyen_AG

    Trung úy

  • Hiệp sỹ
  • 945 Bài viết
  • Giới tính:Nam

Đã gửi 03-03-2017 - 23:29

CRUX

$(a+b)^2(b+c)^2(a+c)^2\geq abc(a+2b+c)(a+2c+b)(2a+b+c)$

 

Giả sử $c = \min\{a,b,c\}$ khi đó

\[\begin{aligned}(a+b)^2(b+c)^2(a+c)^2&-abc(a+2b+c)(a+2c+b)(2a+b+c) \\&= (a+b+c)\left[2c^2(a+b)(a-b)^2+(a^2b+ca^2+ab^2+b^2c)(a-c)(b-c)\right] \geqslant 0.\end{aligned}\]


Nguyen Van Huyen
Ho Chi Minh City University Of Transport




1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh