Đến nội dung


Hình ảnh

Tuần 2 tháng 3/2017: Chứng minh $KM=KN$ và nhận bài đề nghị từ bạn đọc

hình học

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Zaraki

Zaraki

    PQT

  • Phó Quản trị
  • 4227 Bài viết
  • Giới tính:Nam
  • Đến từ:Đảo mộng mơ.
  • Sở thích:Geometry, Number Theory, Combinatorics, Manga

Đã gửi 12-03-2017 - 18:55

Như vậy lời giải cho bài toán Tuần 1 tháng 3/2017 đã được thầy Hùng đưa tại đây kèm theo đó là bài toán mới. Xin trích dẫn lại bài toán mới:

 

Cho tam giác $ABC$ cân tại $A$. $P,Q$ đối xứng nhau qua trung điểm $BC$ và $PQ \perp AB$. $K$ là tâm ngoại tiếp tam giác $APQ$ và $AR$ là đường đối trung của tam giác $APQ$. $KR,KC$ cắt phân giác $\angle PAQ$ tại $M,N$. Chứng minh rằng $KM=KN$.

 

Screen Shot 2017-03-12 at 9.46.25 PM.png

 

Chuyên mục Mỗi tuần một bài toán cũng sẽ bắt đầu nhận và đăng bài đề nghị từ bạn đọc. Đề đề nghị có thể gửi qua email teamhinhhochsgs[a còng]gmail.com. Xin trích dẫn lại đề đề nghị của tuần này đến từ tác giả Trịnh Huy Vũ, K61 Toán, ĐHKHTN, ĐHQGHN:

 

Cho tam giác $ABC$. Trên trung trực của đoạn $BC$ lấy điểm $D$ sao cho $\angle DBC= \angle DCB= \theta$ và $A,D$ khác phía so với $BC$. Lấy hai điểm $E,F$ tương ứng nằm trên hai cạnh $CA,AB$ của tam giác $ABC$ sao cho đường thẳng $AD$ đi qua trung điểm của $EF$. Trên trung trực $EF$ lấy điểm $H$ sao cho $\angle EHF=2\theta$ và $A,H$ nằm cùng phía với $EF$. Chứng minh rằng $AH \perp BC$.

 

Screen Shot 2017-03-12 at 9.54.49 PM.png


Bài viết đã được chỉnh sửa nội dung bởi Zaraki: 12-03-2017 - 18:56

“A man's dream will never end!” - Marshall D. Teach.

#2 Nguyen Dinh Hoang

Nguyen Dinh Hoang

    Hạ sĩ

  • Thành viên
  • 99 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K44 Trường THPT chuyên Phan Bội Châu
  • Sở thích:hình học, giải tích

Đã gửi 13-03-2017 - 10:46

Lời giải của em:

Bổ đề: Cho tam giác $ABC$, $AP$, $AQ$ là 2 tia đẳng giác trong góc $BAC$. $BP$ cắt $AQ$ tại $X$, $BQ$ cắt $CP$ tại $Y$. Thì $AX$, $AY$ đẳng giác trong $BAC$. (C/m ở trước ).

Gọi $L$ là giao của $AR$ với $BC$, $J$ là giao của $AC$ với $PQ$. Ta chỉ cần chứng minh $KM$, $KN$ đẳng giác trong $AKI$. Áp dụng bổ đề ta cần chứng minh $KJ$, $KL$ đẳng giác trong $AKI$ mặt khác ta lại có $\measuredangle AIL = \measuredangle KIQ$ nên $IL$, $IQ$ đẳng giác trong $AIK$ nên ta chứng minh $L$ và $J$ là 2 điểm đẳng giác trong tam giác $AKI$ 

Ta chứng minh $\measuredangle RAI = \measuredangle KAC$. Ta có $\measuredangle KAC = \measuredangle IAC - \measuredangle IAK = \measuredangle IAB - \measuredangle KAI = \measuredangle BAI - \measuredangle BAR = \measuredangle RAI$. Ta có $DPCM$$

Hình gửi kèm

  • MTMBT.png

Bài viết đã được chỉnh sửa nội dung bởi Nguyen Dinh Hoang: 13-03-2017 - 10:48


#3 quynhlqd2016

quynhlqd2016

    Binh nhì

  • Thành viên mới
  • 12 Bài viết
  • Giới tính:Nữ

Đã gửi 13-03-2017 - 15:11

Vẽ KS vuông góc với AR. Ta có KSR=KIR=90   $\Rightarrow RSKI$ nội tiếp$\Rightarrow \widehat{RSI}=\widehat{RKI}$

mặt khác $AR\cap (K)=W$   suy ra $\widehat{AKS}=\widehat{AQW}$=$\widehat{AIP}$=$\widehat{ABC}$=$\widehat{ACB}$

$KS\cap BC=T$   $\Rightarrow$ AKCT nội tiếp

$\Rightarrow \widehat{AKN}=\widehat{ATI}$(1)

Vì ASIT nôi  tiếp $\Rightarrow \widehat{RSI}=\widehat{ATI}=\widehat{RKI}$(2)

TỪ (1),(2)$\Rightarrow \widehat{AKM}=\widehat{RKI}$

$\Rightarrow KN=KM$

Hình gửi kèm

  • tuần 2 tháng 3.png

Bài viết đã được chỉnh sửa nội dung bởi quynhlqd2016: 13-03-2017 - 15:23






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh