Đến nội dung


Chú ý

Diễn đàn vừa được bảo trì và nâng cấp nên có thể sẽ hoạt động không ổn định. Các bạn vui lòng thông báo lỗi cho BQT tại chủ đề này.


Hình ảnh
- - - - -

Cho tam giác $ABC$ biết $B(-2;1)$


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Oo Nguyen Hoang Nguyen oO

Oo Nguyen Hoang Nguyen oO

    Sĩ quan

  • Thành viên
  • 355 Bài viết
  • Giới tính:Nam
  • Đến từ:Đồng Nai
  • Sở thích:Làm toán

Đã gửi 21-03-2017 - 06:32

Cho tam giác $ABC$ biết $B(-2;1)$, đường cao và đường phân giác trong qua $A$, $C$ lần lượt là $d1=3x-4y+27=0$ và $d2=x+2y-5=0$. Viết phương trình các cạnh của tam giác.


Số hoàn hảo giống như người hoàn hảo, rất hiếm có.

Perfect numbers like perfect men, are very rare.

Rene Descartes

TỰ HÀO LÀ THÀNH VIÊN $\sqrt{MF}$

:icon6: :icon6: :icon6:


#2 tritanngo99

tritanngo99

    Trung úy

  • Điều hành viên THCS
  • 788 Bài viết
  • Giới tính:Nam
  • Đến từ:Đà Nẵng
  • Sở thích:Đá banh, nghe nhạc, làm toán.

Đã gửi 21-03-2017 - 11:02

Cho tam giác $ABC$ biết $B(-2;1)$, đường cao và đường phân giác trong qua $A$, $C$ lần lượt là $d1=3x-4y+27=0$ và $d2=x+2y-5=0$. Viết phương trình các cạnh của tam giác.

ef.JPG

Hướng dẫn:

+Có điểm B và phương trình đường cao $AH$. Dễ dàng suy ra được phương trình đường thẳng $\boxed{BC:4x+3y+5=0}$.

+ Khi đó ta tìm được $C(-5;5)$.

+ Gọi $B'$ là điểm đối xứng của $B$ qua $d_2:x+2y-5=0\implies B'\in AC$.

+Gọi $E$ là giao của $BB'$ với $d2$. Dễ dàng tìm được $BB':-2x+y-5=0\implies E(-1;3)\implies B'(0;5)$.

+ Có $B'(0;5);C(-5;5)\implies \boxed{CA:y=5}$.

+ Suy ra tọa độ điểm $A$ là giao của $d_1$ và $CA:y-5=0\implies A(\frac{-7}{3};5)$

+ Suy ra: $\boxed{AB:12x+y+23=0}$


Bài viết đã được chỉnh sửa nội dung bởi tritanngo99: 21-03-2017 - 11:03

 


#3 Oo Nguyen Hoang Nguyen oO

Oo Nguyen Hoang Nguyen oO

    Sĩ quan

  • Thành viên
  • 355 Bài viết
  • Giới tính:Nam
  • Đến từ:Đồng Nai
  • Sở thích:Làm toán

Đã gửi 22-03-2017 - 16:39

Em nghĩ chỗ phương trình đường thẳng $BC$ phải ra là $4x+3y-5=0$ chứ anh..?
Update: à đề là $B(2;-1)$ em xin lỗi em nhầm :(

Bài viết đã được chỉnh sửa nội dung bởi Oo Nguyen Hoang Nguyen oO: 22-03-2017 - 16:47

Số hoàn hảo giống như người hoàn hảo, rất hiếm có.

Perfect numbers like perfect men, are very rare.

Rene Descartes

TỰ HÀO LÀ THÀNH VIÊN $\sqrt{MF}$

:icon6: :icon6: :icon6:





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh