Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Một bài tổ hợp từ một bài số học

supermember

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Karl Heinrich Marx

Karl Heinrich Marx

    Sĩ quan

  • Thành viên
  • 322 Bài viết
  • Giới tính:Nam

Đã gửi 26-03-2017 - 20:42

Thể theo nguyện vọng của đồng chí supermember, lâu lâu lên diễn đàn trao đổi với đồng chí một tí, cũng hi vọng là có thể chia sẻ trao đổi chút gì đó với các bạn.

Từ một bài số học mình biết cũng khá lâu, hôm nay rỗi rãi phát biểu nó sang một bài tổ hợp. Cho một tập hợp $A$ gồm $n$ phần tử, và một dãy tập hợp con khác rỗng phân biệt của $A$ là $A_1,A_2,...,A_T$ với $T=(n-1)^2+1$. Với một dãy số nguyên dương tăng bất kì $a_1,a_2,..,a_n$ mà $a_n \le T$ thì tồn tại $i,j,1 \le i < j \le n$ và $A_{a_i}$ là một tập con của $A_{a_j}$. Chứng minh cái dãy tập hợp trên chứa A.

Thử giải xem nào đại ca supermember. Qua chủ đề này có thể mình sẽ nói 1 chút về sự liên hệ giữa các con số và tập hợp. Theo các bạn là nó có liên hệ gì không?



#2 JUV

JUV

    Trung sĩ

  • Thành viên
  • 138 Bài viết
  • Giới tính:Nam
  • Đến từ:Nam Định
  • Sở thích:Manga, Music

Đã gửi 27-03-2017 - 18:00

định nghĩa một xích là $1$ dãy các tập hợp $(A_{a_1};A_{a_2};...;A_{a_t})$ thoả mãn $0<a_1<a_2<...<a_t<T+1$ và $A_{a_i}\subset A_{a_{i+1}} \forall 1\leq i\leq t-1$. Với mỗi tập $A_i$, gọi $f(A_i)$ là xích dài nhất nhận $A_i$ là tập đầu tiên trong xích. Giả sử mọi xích đều có độ dài $\leq n-1$ thì lúc đó tồn tại $n$ tập $A_{b_i} \forall i=\overline{1,n}$ thoả mãn $f(A_{b_i})=f(A_{b_j}) \forall i,j=\overline{1,n}$. Nếu tồn tại $i;j$: $1\leq i< j\leq n$ để $A_{b_i}\subset A_{b_j}$ thì $f(A_{b_i})\geq f(A_{b_j})+1$ (vô lí). Vì vậy $n$ tập trên không thoả mãn đề bài, suy ra giả sử sai. Vậy tồn tại $1$ xích độ dài $n$, nhận $A_t$ làm tập cuối cùng trong dãy. Lúc đó $\left | A_t \right |\geq n\Rightarrow A_t=A$.



#3 Karl Heinrich Marx

Karl Heinrich Marx

    Sĩ quan

  • Thành viên
  • 322 Bài viết
  • Giới tính:Nam

Đã gửi 27-03-2017 - 23:23

định nghĩa một xích là $1$ dãy các tập hợp $(A_{a_1};A_{a_2};...;A_{a_t})$ thoả mãn $0<a_1<a_2<...<a_t<T+1$ và $A_{a_i}\subset A_{a_{i+1}} \forall 1\leq i\leq t-1$. Với mỗi tập $A_i$, gọi $f(A_i)$ là xích dài nhất nhận $A_i$ là tập đầu tiên trong xích. Giả sử mọi xích đều có độ dài $\leq n-1$ thì lúc đó tồn tại $n$ tập $A_{b_i} \forall i=\overline{1,n}$ thoả mãn $f(A_{b_i})=f(A_{b_j}) \forall i,j=\overline{1,n}$. Nếu tồn tại $i;j$: $1\leq i< j\leq n$ để $A_{b_i}\subset A_{b_j}$ thì $f(A_{b_i})\geq f(A_{b_j})+1$ (vô lí). Vì vậy $n$ tập trên không thoả mãn đề bài, suy ra giả sử sai. Vậy tồn tại $1$ xích độ dài $n$, nhận $A_t$ làm tập cuối cùng trong dãy. Lúc đó $\left | A_t \right |\geq n\Rightarrow A_t=A$.

Lời giải của bạn chính xác rồi, lời giải của mình hơi khác một tí nhưng chung quy vẫn là nguyên lí Dirichlet, thế theo bạn bài toán này phát biểu một cách số học thì nó như thế nào?







Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: supermember

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh