Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
* * * * * 1 Bình chọn

$AB^{2}+AC^{2}+AD^{2}+BC^{2}+BD^{2}+CD^{2}=3(GA^{2}+GB^{2}+GC^{2}+GD^{2})$


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 yeutoanmaimai1

yeutoanmaimai1

    Thượng sĩ

  • Thành viên
  • 295 Bài viết
  • Giới tính:Nam
  • Đến từ:nơi không có sự sống
  • Sở thích:hình học phẳng

Đã gửi 25-04-2017 - 18:36

Cho tứ diện $ABCD$, $G$ là trọng tâm của tứ diện.

Chứng minh $AB^{2}+AC^{2}+AD^{2}+BC^{2}+BD^{2}+CD^{2}=3(GA^{2}+GB^{2}+GC^{2}+GD^{2})$


Bài viết đã được chỉnh sửa nội dung bởi yeutoanmaimai1: 25-04-2017 - 18:37


#2 linhphammai

linhphammai

    Thượng sĩ

  • Thành viên
  • 241 Bài viết
  • Giới tính:Không khai báo
  • Sở thích:Toán_Vật lý_Hóa học_Sinh học

Đã gửi 30-04-2017 - 00:01

Cho tứ diện $ABCD$, $G$ là trọng tâm của tứ diện.

Chứng minh $AB^{2}+AC^{2}+AD^{2}+BC^{2}+BD^{2}+CD^{2}=3(GA^{2}+GB^{2}+GC^{2}+GD^{2})$

Bài này chỉ dùng vectơ thôi

Có một số kết quả sau

$\vec{GA} + \vec{GB} + \vec{GC} + \vec{GD} = 0$

$\vec{AB} = \vec{GB} - \vec{GA}$

Áp dụng hai cái trên là ra rồi


NEVER GIVE UP... :angry:  

Không cần to lớn để bắt đầu, nhưng cần bắt đầu để trở nên to lớn...

 

 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh