Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Đường thẳng $\Delta$ , mặt cầu nội tiếp $ABCD$ , Tính $CD$

trắc nghiệm

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 KaveZS

KaveZS

    Trung sĩ

  • Thành viên
  • 102 Bài viết
  • Giới tính:Nam

Đã gửi 09-05-2017 - 13:43

Cho đường thẳng $\Delta : \frac{x-2}{2}=\frac{y-1}{2}=\frac{z+2}{-3}$ và hai điểm $A(1;-1;-1)$ và $B(-2;-1;1)$. Gọi $C$ , $D$ là
hai điểm di động trên đường thẳng $\Delta$ sao cho tâm mặt cầu nội tiếp tứ diện $ABCD$ luôn nằm trên tia $Ox$.
Tính độ dài đoạn thẳng $CD$.

 

A. $CD=\sqrt{17}$

B. $CD=\frac{3\sqrt{17}}{11}$

C. $CD=\frac{2\sqrt{17}}{17}$

D. $CD=\sqrt{13}$


Bài viết đã được chỉnh sửa nội dung bởi KaveZS: 09-05-2017 - 13:47


#2 thoai6cthcstqp

thoai6cthcstqp

    Trung sĩ

  • Thành viên
  • 145 Bài viết
  • Giới tính:Nam
  • Đến từ:Thpt Thanh Chương 1, Nghệ An
  • Sở thích:Éo có

Đã gửi 11-05-2017 - 13:49

Cho đường thẳng $\Delta : \frac{x-2}{2}=\frac{y-1}{2}=\frac{z+2}{-3}$ và hai điểm $A(1;-1;-1)$ và $B(-2;-1;1)$. Gọi $C$ , $D$ là
hai điểm di động trên đường thẳng $\Delta$ sao cho tâm mặt cầu nội tiếp tứ diện $ABCD$ luôn nằm trên tia $Ox$.
Tính độ dài đoạn thẳng $CD$.

 

A. $CD=\sqrt{17}$

B. $CD=\frac{3\sqrt{17}}{11}$

C. $CD=\frac{2\sqrt{17}}{17}$

D. $CD=\sqrt{13}$

Đề thi thử THPT Đặng Thúc Hứa lần 2 phải không bạn?

Đề chưa chuẩn nhé, đúng là: $\Delta : \frac{x-2}{2}=\frac{y-1}{2}=\frac{z+3}{-3}$


VML <3


#3 thoai6cthcstqp

thoai6cthcstqp

    Trung sĩ

  • Thành viên
  • 145 Bài viết
  • Giới tính:Nam
  • Đến từ:Thpt Thanh Chương 1, Nghệ An
  • Sở thích:Éo có

Đã gửi 11-05-2017 - 14:06

Cho đường thẳng $\Delta : \frac{x-2}{2}=\frac{y-1}{2}=\frac{z+2}{-3}$ và hai điểm $A(1;-1;-1)$ và $B(-2;-1;1)$. Gọi $C$ , $D$ là
hai điểm di động trên đường thẳng $\Delta$ sao cho tâm mặt cầu nội tiếp tứ diện $ABCD$ luôn nằm trên tia $Ox$.
Tính độ dài đoạn thẳng $CD$.

 

A. $CD=\sqrt{17}$

B. $CD=\frac{3\sqrt{17}}{11}$

C. $CD=\frac{2\sqrt{17}}{17}$

D. $CD=\sqrt{13}$

 

Hình gửi kèm

  • 444.png

VML <3






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: trắc nghiệm

1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh