Đến nội dung


Thông báo

Thời gian vừa qua do diễn đàn gặp một số vấn đề về kĩ thuật nên thỉnh thoảng không truy cập được, mong các bạn thông cảm. Hiện nay vấn đề này đã được giải quyết triệt để. Nếu các bạn gặp lỗi trong lúc sử dụng diễn đàn, xin vui lòng thông báo cho Ban Quản Trị.


Hình ảnh

Đề thi IRAN TST 2017 - Phần 3

iran tst 2017

  • Please log in to reply
Chủ đề này có 4 trả lời

#1 Mr Cooper

Mr Cooper

    Sĩ quan

  • Thành viên
  • 494 Bài viết
  • Giới tính:Nam
  • Đến từ:Miền cắt trắng
  • Sở thích:$\mathbb{Geometry}$

Đã gửi 29-05-2017 - 18:48

\[\textbf{IRAN TST 2017}\]

 

 

 

$\text{Ngày thứ nhất}$

 

Bài Toán 1. Cho số nguyên $n>1$. Chứng minh rằng tồn tại số nguyên $n-1 \ge m \ge \left \lfloor \frac{n}{2} \right \rfloor$ sao cho phương trình sau có nghiệm nguyên thỏa mãn $a_m>0:$

$\displaystyle\frac{a_{m}}{m+1}+\frac{a_{m+1}}{m+2}+ \cdots + \frac{a_{n-1}}{n}=\frac{1}{\textrm{lcm}\left ( 1,2, \cdots , n \right )}.$

Bài Toán 2. Cho $P$ là một điểm nằm trong tứ giác $ABCD$ sao cho

$\angle BPC=2\angle BAC  , \angle PCA = \angle PAD  , \angle PDA=\angle PAC.$

Chứng minh rằng $\angle PBD= \left | \angle BCA - \angle PCA \right |.$

Bài Toán 3. Tìm tất cả các hàm $f: \mathbb {R}^+ \times \mathbb {R}^+ \to \mathbb {R}^+$ thỏa mãn đồng thời hai điều kiện sau với mỗi ba số thực dương $x,y,z$.

1) $f\left ( f(x,y),z \right )=x^2y^2f(x,z).$

2) $f\left ( x,1+f(x,y) \right ) \ge x^2 + xyf(x,x).$

 

$\text{Ngày thứ hai}$

 

Bài Toán 4. Cho $6$ điểm nằm trên mặt phẳng sao cho không có ba điểm nào thẳng hàng. Biết rằng trong $4$ điểm bất kỳ trong các điểm đã cho, tồn tại một điểm có phương tích đối với đường tròn đi qua ba điểm còn lại bằng một hằng số $k$. Chứng minh rằng cả $6$ điểm đã cho cùng nằm trên một đường tròn.

Bài Toán 5. Cho $\left \{ c_i \right \}_{i=0}^{\infty}$ là một dãy các số thực không âm thỏa mãn $c_{2017}>0$. Xét dãy đa thức $P_n(x)$ xác định bởi

$P_{-1}(x)=0 \ , \ P_0(x)=1 \ , \ P_{n+1}(x)=xP_n(x)+c_nP_{n-1}(x),\,\forall n\geq 0.$

Chứng minh rằng không tồn tại số nguyên $n>2017$ và số thực $c$ sao cho $P_{2n}(x)=P_n(x^2+c).$

Bài Toán 6. Cho tam giác $ABC$ với tâm ngoại tiếp $O$ và trực tâm $H$. Điểm $P$ đối xứng với $A$ qua $OH$. Giả sử $P$ không nằm trên nửa mặt phẳng bờ $BC$ chứa $A$. Các điểm $E,F$ lần lượt thuộc $AB,AC$ sao cho $BE=PC  , CF=PB$. Gọi $K$ là giao điểm của $AP,OH$. Chứng minh rằng $\angle EKF = 90 ^{\circ}.$

 

 

Người dịch: Nguyễn Trung Tuân


Bài viết đã được chỉnh sửa nội dung bởi Mr Cooper: 29-05-2017 - 19:03


#2 manhtuan00

manhtuan00

    Trung sĩ

  • Thành viên
  • 106 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Khoa học Tự nhiên

Đã gửi 06-06-2017 - 22:14

Bài 4 : Xét bất kì 4 điểm , tồn tại 1 điểm có phương tích bằng $k$ đến đường tròn ngoại tiếp 3 điểm còn lại . Ta đánh dấu điểm này . Số cách chọn ra 4 điểm là $C^4_6 = 15$ nên tồn tại 1 điểm được đánh dấu 3 lần ( gọi là điểm $A$ ) , tức  là tồn tại 3 đường tròn mà phương tích từ điểm này chính là tâm đẳng phương của chúng. Nếu như có 4 điểm nào đó thuộc 1 đường tròn thì ta có $k=0$ thì tất cả mọi điểm nằm trên một đường tròn.Nếu 4 điểm bất kì không trên một đường tròn thì 3 đường tròn trên đi qua 5 điểm , suy ra sẽ có 2 đường tròn chung 2 điểm , 2 điểm này chính là trục đẳng phương (gọi là $X,Y$). Mà $A$ là tâm đẳng phương nên $A,X,Y$ thẳng hàng. Ta có điều mâu thuẫn



#3 manhtuan00

manhtuan00

    Trung sĩ

  • Thành viên
  • 106 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Khoa học Tự nhiên

Đã gửi 06-06-2017 - 23:15

Bài 6 : Dựng hình bình hành $BGCP$ , $A'$ đối xứng $A$ qua $O$, $M$ là trung điểm $BC$. Khi đó $HGA'P$ là hình bình hành nên $G$ nằm trên $OH$

Ta có $\angle EGF = 360 - \angle EGB - \angle BGC - \angle CGF = 360 - (90 - \angle EBG / 2) - (90 - \angle FCG /2 ) - \angle BPC = \angle A +(\angle EBG + \angle FCG)/2 = \angle A + 90 - \angle GBP = 90 $ nên $\angle  EGF = 90 $ 

Gọi $Q$ là giao điểm của $(AEF)$ với $(O)$ . Khi đó ta có $\frac{QB}{QC} = \frac{EB}{FC} = \frac{PC}{PB}$ nên $PQ$ chia đôi $BC$ , tức là $Q,G,M,P$ thẳng hàng . GỌi $N$ là trung điểm $EF$

Xét phép vị tự quay tâm $Q$ biến $F \rightarrow C , N \rightarrow M$ nên $\triangle QMN \sim \triangle QCF$ nên $\angle QNM = \angle QCF = \angle QPA \implies MN \parallel AP \implies MN$ là trung trực $KG$ (do có $M$ là trung điểm $A'H$ ) , tức là $MK = MD$ nên $E,D,K,F$ đồng viên , suy ra $\angle EKF = 90 $



#4 Drago

Drago

    Sĩ quan

  • Thành viên
  • 415 Bài viết
  • Giới tính:Nam
  • Đến từ:$\star \int_{CQT}^{11T}\star$
  • Sở thích:Toán học

Đã gửi 19-06-2017 - 13:29

Bài 4 : Xét bất kì 4 điểm , tồn tại 1 điểm có phương tích bằng $k$ đến đường tròn ngoại tiếp 3 điểm còn lại . Ta đánh dấu điểm này . Số cách chọn ra 4 điểm là $C^4_6 = 15$ nên tồn tại 1 điểm được đánh dấu 3 lần ( gọi là điểm $A$ ) , tức  là tồn tại 3 đường tròn mà phương tích từ điểm này chính là tâm đẳng phương của chúng. Nếu như có 4 điểm nào đó thuộc 1 đường tròn thì ta có $k=0$ thì tất cả mọi điểm nằm trên một đường tròn.Nếu 4 điểm bất kì không trên một đường tròn thì 3 đường tròn trên đi qua 5 điểm , suy ra sẽ có 2 đường tròn chung 2 điểm , 2 điểm này chính là trục đẳng phương (gọi là $X,Y$). Mà $A$ là tâm đẳng phương nên $A,X,Y$ thẳng hàng. Ta có điều mâu thuẫn

Xin lỗi mình muốn hỏi tại sao

-Lại có điểm được đánh dấu 3 lần?

-Vì sao 3 đường tròn đó đi qua 5 điểm?

 

Bài 6 : Dựng hình bình hành $BGCP$ , $A'$ đối xứng $A$ qua $O$, $M$ là trung điểm $BC$. Khi đó $HGA'P$ là hình bình hành nên $G$ nằm trên $OH$

Ta có $\angle EGF = 360 - \angle EGB - \angle BGC - \angle CGF = 360 - (90 - \angle EBG / 2) - (90 - \angle FCG /2 ) - \angle BPC = \angle A +(\angle EBG + \angle FCG)/2 = \angle A + 90 - \angle GBP = 90 $ nên $\angle  EGF = 90 $ 

Gọi $Q$ là giao điểm của $(AEF)$ với $(O)$ . Khi đó ta có $\frac{QB}{QC} = \frac{EB}{FC} = \frac{PC}{PB}$ nên $PQ$ chia đôi $BC$ , tức là $Q,G,M,P$ thẳng hàng . GỌi $N$ là trung điểm $EF$

Xét phép vị tự quay tâm $Q$ biến $F \rightarrow C , N \rightarrow M$ nên $\triangle QMN \sim \triangle QCF$ nên $\angle QNM = \angle QCF = \angle QPA \implies MN \parallel AP \implies MN$ là trung trực $KG$ (do có $M$ là trung điểm $A'H$ ) , tức là $MK = MD$ nên $E,D,K,F$ đồng viên , suy ra $\angle EKF = 90 $

 

Tại sao

 

-$HGA'P$ là hình bình hành và $G$ nằm trên $OH$

-$\angle EGF = 360 - \angle EGB - \angle BGC - \angle CGF = 360 - (90 - \angle EBG / 2) - (90 - \angle FCG /2 ) - \angle BPC = \angle A +(\angle EBG + \angle FCG)/2 = \angle A + 90 - \angle GBP = 90 $ nên $\angle  EGF = 90 $ nên $\angle  EGF = 90$

Khúc này mình không hiểu lắm, với lại $EGF$ theo hình vẽ rõ ràng là góc tù sao $\angle  EGF = 90$

 

Cảm ơn bạn! 


Bài viết đã được chỉnh sửa nội dung bởi Drago: 19-06-2017 - 14:17

$\mathbb{ThanhLong-11T-LQD-QT}$


#5 manhtuan00

manhtuan00

    Trung sĩ

  • Thành viên
  • 106 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Khoa học Tự nhiên

Đã gửi 23-06-2017 - 09:59

Xin lỗi mình muốn hỏi tại sao

-Lại có điểm được đánh dấu 3 lần?

-Vì sao 3 đường tròn đó đi qua 5 điểm?

 

Tại sao

 

-$HGA'P$ là hình bình hành và $G$ nằm trên $OH$

-$\angle EGF = 360 - \angle EGB - \angle BGC - \angle CGF = 360 - (90 - \angle EBG / 2) - (90 - \angle FCG /2 ) - \angle BPC = \angle A +(\angle EBG + \angle FCG)/2 = \angle A + 90 - \angle GBP = 90 $ nên $\angle  EGF = 90 $ nên $\angle  EGF = 90$

Khúc này mình không hiểu lắm, với lại $EGF$ theo hình vẽ rõ ràng là góc tù sao $\angle  EGF = 90$

 

Cảm ơn bạn! 

em nghĩ thế này ạ 

Có $C^4_6 = 15$ tức là ta đã đánh dấu các điểm 15 lần > 2.6, theo nguyên lý Dirichlet thì có 1 điểm được đánh dấu 3 lần, tức là sẽ có 3 đường tròn sao cho phương tích từ điểm này đến 3 đường tròn đó đều bằng $k$ . Nếu chỉ cần một đường tròn đi qua điểm trên, tức là có 4 điểm đồng viên, thì ta có $k = 0$ thì sẽ suy ra được tất cả các điểm còn lại cũng nằm trên một đường tròn . Vậy xét trường hợp 3 đường tròn trên đều không đi qua điểm " được đánh dấu 3 lần " đó , tức là 3 đường tròn sẽ đi qua 5 điểm còn lại

Bài hình : ý đầu em làm hơi tắt tẹo, gọi $A'$ đối xứng $A$ qua $O$ . Tứ giác $BGCP$ là hình bình hành nên $G$ đối xứng $P$ qua trung điểm $M$, suy ra $HGA'P$ là hình bình hành , tức là $HG \parallel A'P$ . Mà $A'$ đối xứng $A$ qua $O$ , $P$ đối xứng $A$ qua $OH$ nên $HG \parallel OH$, kết hợp 2 điều trên ta có $G$ nằm trên $OH$

Ý thứ 2 : $\angel EGF = 90$ thì là theo phần cộng góc , và trong hình cũng hiển thị góc vuông ạ 

Hình gửi kèm

  • 19095668_1072510829547605_9200434862841217758_o.jpg





0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh