Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Đề thi tuyển sinh môn toán chuyên trường THPT Trần Hưng Đạo- Bình Thuận năm 2017-2018


  • Please log in to reply
Chủ đề này có 6 trả lời

#1 NHoang1608

NHoang1608

    Sĩ quan

  • Thành viên
  • 375 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K46 THPT chuyên Phan Bội Châu
  • Sở thích:$\boxed{\lim_{I\rightarrow U} Love= +\infty}$

Đã gửi 02-06-2017 - 17:55

18835775_1875330302726713_2395052065651183729_n.jpg

 

Nguồn: 'Mặt sách' nhóm ôn thi vào 10 chuyên.

Đề thi khá hay nhưng câu số hơi dễ


Bài viết đã được chỉnh sửa nội dung bởi NHoang1608: 02-06-2017 - 18:22

The greatest danger for most of us is not that our aim is too high and we miss it, but that it is too low and we reach it.

----- Michelangelo----


#2 NHoang1608

NHoang1608

    Sĩ quan

  • Thành viên
  • 375 Bài viết
  • Giới tính:Nam
  • Đến từ:A1K46 THPT chuyên Phan Bội Châu
  • Sở thích:$\boxed{\lim_{I\rightarrow U} Love= +\infty}$

Đã gửi 02-06-2017 - 18:16

Bài 3.

 Ta có $VT= (\frac{z+y+xyz}{z} )(\frac{x+y+xyz}{y}) (\frac{z+x+xyz}{x})$

               $= \frac{1}{xyz}(4-x)(4-y)(4-z)$

Ta có $4=xyz+x+y+z \geq 3\sqrt[3]{xyz} + xyz$

Đặt $\sqrt[3]{xyz}= a$ khi đó $4 \geq 3a + a^{3} \Rightarrow (1-a)(a^{2}+a+4) \geq 0 \Rightarrow 1\geq a$ hay $1\geq \sqrt[3]{xyz}$ $(1)$

BĐT tương đương với $(4-x)(4-y)(4-z) \geq 27xyz$

                                  $\Leftrightarrow 16+xy+yz+zx \geq 7xyz+ 4(x+y+z)$

                                  $\Leftrightarrow 16+xy+yz+zx \geq 3xyz + 16$

                                  $\Leftrightarrow xy+yz+zx \geq 3xyz$

Mặt khác áp dụng $(1)$ và $AM-GM$ ta có $xy+yz+zx \geq 3\sqrt[3]{(xyz)^{2}.1} \geq 3\sqrt[3]{(xyz)^{3}}= 3xyz$

Từ đó ta có đpcm. ĐTXR khi $x=y=z=1$


Bài viết đã được chỉnh sửa nội dung bởi NHoang1608: 02-06-2017 - 18:44

The greatest danger for most of us is not that our aim is too high and we miss it, but that it is too low and we reach it.

----- Michelangelo----


#3 Nike Adidas

Nike Adidas

    Hạ sĩ

  • Thành viên
  • 75 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Bỉnh Khiêm, Vĩnh Long
  • Sở thích:Hate Math but love Plane Geometry, One Piece

Đã gửi 02-06-2017 - 20:55

bài hình khá dễ


" Khi ta đã quyết định con đường cho mình, kẻ được nói ta ngu ngốc chỉ có bản thân ta mà thôi. " _ Rononoa Zoro.


#4 duylax2412

duylax2412

    Trung sĩ

  • Thành viên
  • 191 Bài viết
  • Giới tính:Nam
  • Đến từ:Thái dương hệ
  • Sở thích:số học & piano

Đã gửi 02-06-2017 - 21:29

Xin làm bài 5:

Do mỗi $HS$ chỉ nhận một loại quà và có $4$ loại quà nên sẽ có ít nhất $[\frac{97}{4}]+1=25$ $HS$ nhận cùng một loại quà.Trong số $HS$ này thì sẽ có ít nhất $[\frac{25}{3}]+1=9$ $HS$ cùng trường,Tức là có ít nhất $9$ $HS$ cùng trường,cùng nhận loại quà.Để có kết quả bài toán,cần phải chứng minh trong $9$ $HS$ này có ít nhất $3$ $HS$ cùng tuổi. Giả sử ngược lại, không có $3$ $HS$ nào cùng tuổi,theo giả thiết lúc đó sẽ chọn ra $3$ cặp đôi cùng tuổi,gọi $3$ cặp đôi này là $(A;B)$;$(C;D)$;$(E;F)$(bằng cách nhóm $5$ học sinh nhiều lần).Gọi ba học sinh còn lại là $X,Y,Z$.Xét hai bộ $5$ $HS$ gồm $A,C,E,X,Y$ và $A,C,E,X,Z$ lại dùng giả thiết thì suy ra $X,Y,Z$ quen nhau mâu thuẫn điều vừa giả sử.Từ đây suy ra $đpcm$


Bài viết đã được chỉnh sửa nội dung bởi duylax2412: 03-06-2017 - 06:41

Chỉ có hai điều là vô hạn: vũ trụ và sự ngu xuẩn của con người, và tôi không chắc lắm về điều đầu tiên.

Only two things are infinite, the universe and human stupidity, and I'm not sure about the former.

ALBERT EINSTEIN

 

 


#5 Mr Cooper

Mr Cooper

    Sĩ quan

  • Thành viên
  • 496 Bài viết
  • Giới tính:Nam
  • Đến từ:Miền cắt trắng
  • Sở thích:$\mathbb{Geometry}$

Đã gửi 02-06-2017 - 21:45

Bài 4.

Đề tuyển sinh chuyên Trần Hưng Đạo - Bình Thuận 2017-2018 vòng 2.png

a) Theo hệ thức lượng: $AE^2=AJ.AC=AI.AB=AG^2 \Rightarrow AE=AG$

A thuộc đường trung trực của $EF$ $\Rightarrow AE=AF$

CMTT: $AG=AK$

$\Rightarrow AE=AG=AK=AF \Rightarrow A$ là tâm đường tròn ngoại tiếp tứ giác $KEGF$

b) $\angle PEG = \angle PDG = \angle BAG = \frac{\angle KAG}{2}$

$\angle KEG = \angle AEK + \angle AEG = 180^{\circ} - \frac{\angle KAG}{2} = 180^{\circ} - \angle PEG \Rightarrow \angle KEG + \angle PEG = 180^{\circ} $

$\Rightarrow P,E,K$ thẳng hàng

c) $\angle KEG + \angle BAK = \angle KEG + \angle KFG=180^{\circ} \Rightarrow \angle KFG = \angle BAK =  \angle BDK$

$\Rightarrow K,D,P,F$ cùng thuộc một đường tròn



#6 ddang00

ddang00

    Hạ sĩ

  • Thành viên
  • 76 Bài viết
  • Giới tính:Nam
  • Đến từ:10T,THPT Chuyên Lam Sơn
  • Sở thích:%T&T%(Tiền và Toán)

Đã gửi 02-06-2017 - 22:01

Bài 3.

 Ta có $VT= (\frac{z+y+xyz}{z} )(\frac{x+y+xyz}{y}) (\frac{z+x+xyz}{x})$

               $= \frac{1}{xyz}(4-x)(4-y)(4-z)$

Ta có $4=xyz+x+y+z \geq 3\sqrt[3]{xyz} + xyz$

Đặt $\sqrt[3]{xyz}= a$ khi đó $4 \geq 3a + a^{3} \Rightarrow (1-a)(a^{2}+a+4) \geq 0 \Rightarrow 1\geq a$ hay $1\geq \sqrt[3]{xyz}$ $(1)$

BĐT tương đương với $(4-x)(4-y)(4-z) \geq 27xyz$

                                  $\Leftrightarrow 16+xy+yz+zx \geq 7xyz+ 4(x+y+z)$

                                  $\Leftrightarrow 16+xy+yz+zx \geq 3xyz + 16$

                                  $\Leftrightarrow xy+yz+zx \geq 3xyz$

Mặt khác áp dụng $(1)$ và $AM-GM$ ta có $xy+yz+zx \geq 3\sqrt[3]{(xyz)^{2}.1} \geq 3\sqrt[3]{(xyz)^{3}}= 3xyz$

Từ đó ta có đpcm. ĐTXR khi $x=y=z=1$

Do dấu bằng xảu ra $<=>x=y=z=1$ nên chỗ bôi đỏ đó bạn AM-GM bốn số cho nhanh!


:ukliam2:  :ukliam2:  :ukliam2:  :ukliam2:  :ukliam2:  :ukliam2:  :ukliam2: I Love $\sqrt{MF}$ :ukliam2:  :ukliam2:  :ukliam2:  :ukliam2:  :ukliam2:  :ukliam2:  :ukliam2:


#7 maidangminh

maidangminh

    Lính mới

  • Thành viên mới
  • 1 Bài viết

Đã gửi 16-06-2017 - 11:07

Ta có p - s = a13 - a1 + a23 - a2 + ...+an 3 - an = (a1 - 1)a1(a1 + 1) + (a2 - 1)a2(a2​ + 1) + ...+ (an - 1)an(an​ + 1) chia hết cho 6.

Vì hiệu P - S chia hết cho 6 mà S chia hết cho 6 nên P cũng phải chia hết cho 6 (dpcm)

 

 

 






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh