Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Một số bài toán hay về căn thức

căn thức lớp 9 tính giá trị biểu thức

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Jiki Watanabe

Jiki Watanabe

    Hạ sĩ

  • Thành viên
  • 63 Bài viết
  • Giới tính:Nữ
  • Đến từ:Sweet home ❤
  • Sở thích:Toán

Đã gửi 21-06-2017 - 16:58

Bài 1: Tìm $x\in Z$ để $A\in Z$ biết $A=\frac{({\sqrt{3x}-1})^{2}}{\sqrt{3x}-2}$

Bài 2: Cho $b={\sqrt[3]{2020}}$. Tính $Q=\sqrt[3]{\frac{b^3-3b+(b^2-1)\sqrt{b^2-4}}{2}}+\sqrt[3]{\frac{b^3-3b-(b^2-1)\sqrt{b^2-4}}{2}}$

Bài 3: Rút gọn

a, $C=\frac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}$ với $x=\frac{1}{2}(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}); 0< a< 1$

b, $D=a+b-\sqrt{\frac{(a^2+1)(b^2+1)}{c^2+1}}$ với $a, b, c > 0$ và $ab+bc+ca=1$


    ~O)  Sách không đơn thuần chỉ là những trang giấy mà trong đó còn chứa đựng một thế giới mà con người luôn khao khát được khám phá ...  ^_^


#2 MoMo123

MoMo123

    Sĩ quan

  • Điều hành viên THCS
  • 333 Bài viết
  • Giới tính:Không khai báo

Đã gửi 21-06-2017 - 17:44

Bài 1: Tìm $x\in Z$ để $A\in Z$ biết $A=\frac{({\sqrt{3x}-1})^{2}}{\sqrt{3x}-2}$

Bài 2: Cho $b={\sqrt[3]{2020}}$. Tính $Q=\sqrt[3]{\frac{b^3-3b+(b^2-1)\sqrt{b^2-4}}{2}}+\sqrt[3]{\frac{b^3-3b-(b^2-1)\sqrt{b^2-4}}{2}}$

Bài 3: Rút gọn

a, $C=\frac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}$ với $x=\frac{1}{2}(\sqrt{\frac{1-a}{a}}-\sqrt{\frac{a}{1-a}}); 0< a< 1$

b, $D=a+b-\sqrt{\frac{(a^2+1)(b^2+1)}{c^2+1}}$ với $a, b, c > 0$ và $ab+bc+ca=1$

 

$D=a+b-\sqrt{\frac{(a^{2}+1)(b^{2}+1)}{c^{2}+1}}$

$=a+b-\sqrt{\frac{(a^{2}+ab+bc+ca)(b^{2}+ab+bc+ca)}{c^{2}+ab+bc+ca}}$

$=a+b-\sqrt{\frac{(a+c)(a+b)(b+a)(b+c)}{(a+c)(b+c)}}$

$=a+b-a-b=0$







0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh