Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

CHUYÊN ĐỀ: HÀM SỐ LIÊN TỤC

giải tích 11 hàm số liên tục

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 nguyenthanhhung1985

nguyenthanhhung1985

    Hạ sĩ

  • Thành viên
  • 84 Bài viết
  • Giới tính:Nam
  • Đến từ:Phước Lộc - Tuy Phước - Bình Định
  • Sở thích:đánh cờ

Đã gửi 04-07-2017 - 23:26

HÀM SỐ LIÊN TỤC

A.ÔN TẬP LÝ THUYẾT:
1.Hàm số liên tục tại một điểm:  $y = f(x)$ liên tục tại $x_0 \iff  \mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})$
- Để xét tính liên tục của hàm số $y = f(x)$ tại điểm $x_0$ ta thực hiện các bước:
Bước 1: Tính   $f(x_0)$.
Bước 2: Tính $\mathop {\lim }\limits_{x \to {x_0}} f(x)$ (trong nhiều trường hợp ta cần tính $\mathop {\lim }\limits_{x \to {x_0}^ + } f(x)$, $\mathop {\lim }\limits_{x \to {x_0}^ - } f(x)$)
Bước 3: So sánh $\mathop {\lim }\limits_{x \to {x_0}} f(x)$ với $f(x_0)$ và rút ra kết luận.
Bước 4: Kết luận.
2.Hàm số liên tục trên một khoảng: $y = f(x)$ liên tục tại mọi điểm thuộc khoảng đó.
3.Hàm số liên tục trên một đoạn $[a; b]$: $y = f(x)$ liên tục trên $(a; b)$ và $\mathop {\lim }\limits_{x \to {a^ + }} f(x) = f(a),\,\,\,\mathop {\lim }\limits_{x \to {b^ - }} f(x) = f(b)$.
4.Hàm số đa thức liên tục trên $\mathbb{R}$.
   Hàm số phân thức, các hàm số lượng giác liên tục trên từng khoảng xác định của chúng.
5.Giả sử $y = f(x),\,\, y = g(x)$ liên tục tại điểm $x_0$.

Khi đó:
- Các hàm số $y = f(x) + g(x),\,\, y = f(x) – g(x),\,\, y = f(x).g(x)$ liên tục tại $x_0$.
- Hàm số $y = \frac{{f(x)}}{{g(x)}}$ liên tục tại $x_0$ nếu $g(x_0) \ne 0$.
6.Nếu $y = f(x)$ liên tục trên $[a; b]$ và $f(a). f(b)< 0$ thì tồn tại ít nhất một số $c \in (a; b):\,\, f(c) = 0$.
Nói cách khác: Nếu $y = f(x)$ liên tục trên $[a; b]$ và $f(a). f(b)< 0$ thì phương trình $f(x) = 0$ có ít nhất một nghiệm  $c\in (a; b)$.
Mở rộng: Nếu $y = f(x)$ liên tục trên [a; b]. Đặt $m = \mathop {\min }\limits_{\left[ {a;b} \right]} f(x)$,  $M = \mathop {\max }\limits_{\left[ {a;b} \right]} f(x)$. Khi đó với mọi $T \in (m; M)$ luôn tồn tại ít nhất một số $c \in (a; b)$: $f(c) = T$.
B.CÁC DẠNG TOÁN:
Vấn đề 1: Hàm số liên tục tại một điểm:
Dạng 1: $f(x) = \left\{ \begin{array}{l}
h(x,m) & \text{nếu}\,\,x \ne {x_0}\\
g(x,m) & \text{nếu}\,\,x = {x_0}
\end{array} \right.\,\,\,\,\,\text{tại}\,\,x = {x_0}$
Phương pháp:
Bước 1: Tính   $f(x_0)$.
Bước 2: Tính $\mathop {\lim }\limits_{x \to {x_0}} f(x)$.
Bước 3: So sánh $\mathop {\lim }\limits_{x \to {x_0}} f(x)$ với $f(x_0)$ và rút ra kết luận.
Bước 4: Kết luận.
Ví dụ 1: Xét tính liên tục của hàm số tại điểm được chỉ ra: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{{x^2} - 3x + 2}}& &\text{nếu}\,\,x \ne 1\,\,\,\,\,\,\\
- 3& &\text{nếu}\,\,x = 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
Hướng dẫn giải:
$f(1) =  - 3$
$\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{2 - 7x + 5{x^2}}}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{5x - 2}}{{x - 2}} =  - 3$
Do: $\mathop {\lim }\limits_{x \to 1} f(x) = f(1) =  - 3$ nên hàm số $f(x)$ liên tục tại ${x_0} = 1$
Vậy: Hàm số $f(x)$ liên tục tại ${x_0} = 1$
Ví dụ 2: Xét tính liên tục của hàm số tại điểm được chỉ ra: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{{x^2} - 3x + 2}}& &\text{nếu}\,x \ne 1\,\,\,\,\,\,\\
- 1& &\text{nếu}\,\,x = 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
Hướng dẫn giải:
$f(1) =  - 1$
$\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{2 - 7x + 5{x^2}}}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{5x - 2}}{{x - 2}} =  - 3$
Do: $\mathop {\lim }\limits_{x \to 1} f(x) \ne f(1)$ nên hàm số $f(x)$ gián đoạn tại ${x_0} = 1$
Vậy: Hàm số $f(x)$ gián đoạn tại ${x_0} = 1$
Ví dụ 3: Tìm m để hàm số liên tục tại điểm được chỉ ra: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{{x^2} - 3x + 2}}& &\text{nếu}\,\,x \ne 1\,\,\,\,\,\,\\
- 3mx - 1& &\text{nếu}\,\,x = 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
Hướng dẫn giải:
$f(1) =  - 3m.1 - 1$
$\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{2 - 7x + 5{x^2}}}{{{x^2} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{5x - 2}}{{x - 2}} =  - 3$
Để hàm số $f(x)$ liên tục tại ${x_0} = 1 \Leftrightarrow \mathop {\lim }\limits_{x \to 1} f(x) = f(1) \Leftrightarrow  - 3m - 1 =  - 3 \Leftrightarrow m =  - \frac{2}{3}$
Vậy: Giá trị $m$ cần tìm là $m = -3$
Bài tập vận dụng:
Bài tập 1: Xét tính liên tục của hàm số tại điểm được chỉ ra:
a) $f(x) = \left\{ \begin{array}{l}
\frac{{x + 3}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\\
- 1& &\text{nếu}\,\,x = 1
\end{array} \right.\,\,\text{tại}\,\,x =  - 1$ 
b) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{\sqrt {x + 3}  - 2}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\,\,\,\,\,\,\\
\frac{1}{4}& &\text{nếu}\,\,x = 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$

c) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2} - {x^3}}}{{{x^2} - 3x + 2}}& &\text{nếu}\,\,x \ne 2\,\,\,\,\,\,\\
1& &\text{nếu}\,\,x = 2
\end{array} \right.\,\,\text{tại}\,\,x = 2$
d) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{\sqrt[3]{{x + 1}} - 1}}{x}& &\text{nếu}\,x \ne 0\,\,\,\,\,\,\\
\frac{1}{3}& &\text{nếu}\,\,x = 0
\end{array} \right.\,\,\text{tại}\,\,x = 0$
Bài tập 2: Tìm $m$, $n$ để hàm số liên tục tại điểm được chỉ ra:
a) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\\
3x + m& &\text{nếu}\,\,x = 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
b) $f(x) = \left\{ \begin{array}{l}
m&  &\text{nếu}\,\,x = 0\\
\frac{{{x^2} - x - 6}}{{x(x - 3)}}&  &\text{nếu}\,\,x \ne 0,x \ne 3\\
n&  &\text{nếu}\,\,x = 3
\end{array} \right.\,\,\text{tại}\,\,x = 0\,\,\text{và}\,\,x = 3$
c) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^2} - x - 2}}{{x - 2}}& &\text{nếu}\,\,x \ne 2\\
m&  &\text{nếu}\,\,x = 2
\end{array} \right.\,\,\text{tại}\,\,x = 2$
d) $f(x) = \left\{ \begin{array}{l}
\frac{{x - 2}}{{\sqrt {6 - x}  - \sqrt[3]{{6 + x}}}}& &\text{nếu}\,\,x \ne 2\\
m&  &\text{nếu}\,\,x = 2
\end{array} \right.\,\,\text{tại}\,\,x = 2$
Dạng 2: $f(x) = \left\{ \begin{array}{l}
h(x,m)& &\text{nếu}\,\,x \ge {x_0}\\
g(x,m)& &\text{nếu}\,\,x < {x_0}
\end{array} \right.\,\,\,\,\,\text{tại}\,\,x = {x_0}$ hoặc $f(x) = \left\{ \begin{array}{l}
h(x,m)& &\text{nếu}\,\,x > {x_0}\\
g(x,m)& &\text{nếu}\,\,x \le {x_0}
\end{array} \right.\,\,\,\,\,\text{tại}\,\,x = {x_0}$
Phương pháp:

Bước 1: Tính   $f(x_0)$.
Bước 2: Tính $\mathop {\lim }\limits_{x \to x_0^ + } f(x)$, $\mathop {\lim }\limits_{x \to x_0^ - } f(x)$.
Bước 3: So sánh $\mathop {\lim }\limits_{x \to x_0^ + } f(x)$, $\mathop {\lim }\limits_{x \to x_0^ - } f(x)$ với $f(x_0)$ và rút ra kết luận.
Bước 4: Kết luận.
Ví dụ 1: Xét tính liên tục của hàm số tại điểm được chỉ ra: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{{x^2} - 3x + 2}}& &\text{nếu}\,x > 1\,\,\,\,\,\,\\
1& &\text{nếu}\,\,x \le 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
Hướng dẫn giải:
$f(1) = 1$
$\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2 - 7x + 5{x^2}}}{{{x^2} + x - 2}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{\left( {x - 1} \right)\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{5x - 2}}{{x + 2}} = 1$
$\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} 1 = 1$
Do: $\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1) =  - 3$ nên hàm số $f(x)$ liên tục tại ${x_0} = 1$
Vậy: Hàm số $f(x)$ liên tục tại ${x_0} = 1$
Ví dụ 2: Xét tính liên tục của hàm số tại điểm được chỉ ra: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{{x^2} + x - 2}}& &\text{nếu}\,x > 1\,\,\,\,\,\,\\
- 1& &\text{nếu}\,\,x \le 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
Hướng dẫn giải:
$f(1) =  - 1$
$\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2 - 7x + 5{x^2}}}{{{x^2} + x - 2}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{\left( {x - 1} \right)\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{5x - 2}}{{x + 2}} = 1$
$\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} ( - 1) =  - 1$
Do: $\mathop {\lim }\limits_{x \to {1^ + }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1) =  - 3$ nên hàm số f(x) gián đoạn tại ${x_0} = 1$
Vậy: Hàm số $f(x)$ gián đoạn tại ${x_0} = 1$
Ví dụ 3: Tìm m để hàm số liên tục tại điểm được chỉ ra: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{{x^2} + x - 2}}& &\text{nếu}\,\,x > 1\,\,\,\,\,\,\\
- 3mx - 1& &\text{nếu}\,\,x \le 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
Hướng dẫn giải:
$f(1) =  - 3m.1 - 1$
$\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2 - 7x + 5{x^2}}}{{{x^2} + x - 2}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{\left( {x - 1} \right)\left( {x + 2} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{5x - 2}}{{x + 2}} = 1$
$\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} ( - 3mx - 1) =  - 3m – 1$
Do hàm số $f(x)$ liên tục tại ${x_0} = 1 \Leftrightarrow \mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1) \Leftrightarrow  - 3m - 1 = 1 \Leftrightarrow m =  - \frac{2}{3}$
Vậy: Giá trị $m$ cần tìm là: $m =  - \frac{2}{3}$
Bài tập vận dụng:
Bài tập 1: Xét tính liên tục của hàm số tại điểm được chỉ ra:
a) $f(x)\, = \,\left\{ \begin{array}{l}
\frac{{x - 5}}{{\sqrt {2x - 1}  - 3}}& &\text{nếu}\,\,x > 5\\
{(x - 5)^2} + 3& &\text{nếu}\,\,x \le \,\,5
\end{array} \right.\,\,\,\,\,\text{tại}\,\,x = 5$ 
b) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
1 - \cos x& &\text{nếu}\,\,x \le 0\,\,\,\,\,\,\\
\sqrt {x + 1}& &\text{nếu}\,\,x > \,0
\end{array} \right.\,\,\text{tại}\,\,x = 0$
c) $f(x) = \left\{ \begin{array}{l}
\frac{{x - 1}}{{\sqrt {2 - x}  - 1}}& &\text{nếu}\,\,x < 1\\
- 2x& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$ 
d) $f(x) = \left\{ \begin{array}{l}
\frac{{1 - \sqrt {2 - x} }}{{x - 1}}& &\text{nếu}\,\,x < 1\\
- \frac{x}{2}& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
e) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^4} - 1}}{{{x^3} - 1}}& &\text{nếu}\,\,x < 1\\
- 2x& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$ 
f) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} - 3{x^2} + 3x - 1}}{{{x^2} - 1}}& &\text{nếu}\,\,x < 1\\
- 2x& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
g) $f(x) = \left\{ \begin{array}{l}
\frac{{\sqrt {{x^2} + 1}  - 1}}{{4 - \sqrt {{x^2} + 16} }}& &\text{nếu}\,\,x < 0\\
1 - 2{x^2}& &\text{nếu}\,\,x \ge 0
\end{array} \right.\,\,\text{tại}\,x = 0$
h) $f(x) = \left\{ \begin{array}{l}
\frac{{\sqrt[3]{{3 - 2x}} - \sqrt {2 - x} }}{{x - 1}}& &\text{nếu}\,\,x < 1\\
- \frac{x}{2}& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
Bài tập 2: Tìm m để hàm số liên tục tại điểm được chỉ ra:
a) $f(x) = \left\{ \begin{array}{l}
{x^2}& &\text{nếu}\,\,x < 1\\
2mx - 3& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$ 
b) $f(x)\, = \,\left\{ \begin{array}{l}
\frac{{x - 5}}{{\sqrt {2x - 1}  - 3}}& &\text{nếu}\,\,x > 5\\
{(x - 5)^2} + 3m& &\text{nếu}\,\,x \le \,\,5
\end{array} \right.\,\,\,\,\,\text{tại}\,\,x = 5$
c) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
1 - m\cos x& &\text{nếu}\,\,x \le 0\,\,\,\,\,\,\\
\sqrt {x + 1}& &\text{nếu}\,\,x > \,0
\end{array} \right.\text{tại}\,\,x = 0$ 
d) $f(x) = \left\{ \begin{array}{l}
\frac{{x - 1}}{{\sqrt {2 - x}  - 1}}& &\text{nếu}\,\,x < 1\\
- 2mx + 1& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
e) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^4} - 1}}{{{x^3} - 1}}& &\text{nếu}\,\,x < 1\\
- 2(m - 1)x + 3& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
f) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} - 3{x^2} + 3x - 1}}{{{x^2} - 1}}& &\text{nếu}\,\,x < 1\\
m - 2x& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
Vấn đề 2: Hàm số liên tục trên tập xác định của nó:
Dạng 1: $f(x) = \left\{ \begin{array}{l}
h(x,m)& &\text{nếu}\,\,x \ne {x_0}\\
g(x,m)& &\text{nếu}\,\,x = {x_0}
\end{array} \right.$

Phương pháp:
Bước 1: Tìm tập xác định của hàm số.
Bước 2: Khi $x \ne {x_0}$. Kiểm tra tính liên tục của hàm số $f(x)$ tại $x \ne {x_0}$.
Bước 3: Khi $x = {x_0}$.
- Tính   $f(x_0)$.
- Tính $\mathop {\lim }\limits_{x \to {x_0}} f(x)$.
- So sánh $\mathop {\lim }\limits_{x \to {x_0}} f(x)$ với $f(x_0)$ và rút ra kết luận tại điểm $x_0$.

Bước 4: Kết luận tính liên tục trên tập xác định của chúng.
Ví dụ 1: Xét tính liên tục của hàm số trên tập xác định của chúng: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\,\,\,\,\,\,\\
3& &\text{nếu}\,\,x = 1
\end{array} \right.$
Hướng dẫn giải:
- Tập xác định: $D = \mathbb{R}$
- Nếu $x \ne 1$, thì hàm số $f(x) = \frac{{2 - 7x + 5{x^2}}}{{x - 1}}$.
Đây là hàm phân thức hữu tỉ có tập xác định là $\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)$.
Vậy nó liên tục trên mỗi khoảng  $\left( { - \infty ;1} \right)$ và $\left( {1; + \infty } \right)$
- Nếu $x = 1$
$f(1) =  - 3$
$\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{2 - 7x + 5{x^2}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (5x - 2) = 3$
Do: $\mathop {\lim }\limits_{x \to 1} f(x) = f(1) = 3$ nên hàm số $f(x)$ liên tục tại ${x_0} = 1$
Suy ra hàm số f(x) liên tục tại ${x_0} = 1$
- Vậy: Hàm số $f(x)$ liên tục trên $\mathbb{R}$.
Ví dụ 2: Xét tính liên tục của hàm số trên tập xác định của chúng: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\,\,\,\,\,\,\\
- 1& &\text{nếu}\,\,x = 1
\end{array} \right.$
Hướng dẫn giải:
- Tập xác định: $D = \mathbb{R}$
- Nếu $x \ne 1$, thì hàm số $f(x) = \frac{{2 - 7x + 5{x^2}}}{{x - 1}}$.
Đây là hàm phân thức hữu tỉ có tập xác định là $\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)$.
Vậy nó liên tục trên mỗi khoảng  $\left( { - \infty ;1} \right)$ và $\left( {1; + \infty } \right)$
- Nếu $x = 1$
$f(1) =  - 1$
$\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{2 - 7x + 5{x^2}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (5x - 2) = 3$
Do: $\mathop {\lim }\limits_{x \to 1} f(x) \ne f(1)$ nên hàm số $f(x)$ không liên tục tại ${x_0} = 1$
Suy ra hàm số $f(x)$ không liên tục tại ${x_0} = 1$
- Vậy: Hàm số $f(x)$ liên tục trên mỗi khoảng $\left( { - \infty ;1} \right)$ và $\left( {1; + \infty } \right)$ nhưng gián đoạn tại ${x_0} = 1$
Ví dụ 3: Tìm $m$ để hàm số liên tục trên tập xác định của chúng:
$f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\,\,\,\,\,\,\\
- 3mx - 1& &\text{nếu}\,\,x = 1
\end{array} \right.\,\,\text{tại}\,\,x = 1$
Hướng dẫn giải:
- Tập xác định: $D = \mathbb{R}$
- Nếu $x \ne 1$, thì hàm số $f(x) = \frac{{2 - 7x + 5{x^2}}}{{x - 1}}$.
Đây là hàm phân thức hữu tỉ có tập xác định là $\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)$.
Vậy nó liên tục trên mỗi khoảng  $\left( { - \infty ;1} \right)$ và $\left( {1; + \infty } \right)$
- Nếu $x = 1$
$f(1) =  - 3m - 1$
$\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{2 - 7x + 5{x^2}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (5x - 2) = 3$
Do hàm số $f(x)$ không liên tục tại ${x_0} = 1$ nên $\mathop {\lim }\limits_{x \to 1} f(x) = f(1) \Leftrightarrow  - 3m - 1 = 3 \Leftrightarrow m =  - \frac{4}{3}$.
- Vậy: Giá trị $m$ cần tìm là $m =  - \frac{4}{3}$
Bài tập vận dụng:
Bài tập 1: Xét tính liên tục của hàm số trên tập xác định của chúng:
a) $f(x) = \left\{ \begin{array}{l}
\frac{{x + 3}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\\
- 1& &\text{nếu}\,\,x = 1
\end{array} \right.\,\,$   
b) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{\sqrt {x + 3}  - 2}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\,\,\,\,\,\,\\
\frac{1}{4}& &\text{nếu}\,\,x = 1
\end{array} \right.$
c) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2} - {x^3}}}{{x - 2}}& &\text{nếu}\,x \ne 2\,\,\,\,\,\,\\
1& &\text{nếu}\,\,x = 2
\end{array} \right.$  
d) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{{x^3} + x + 2}}{{{x^3} + 1}}& &\text{nếu}\,\,x \ne  - 1\\
\frac{4}{3}&  &\text{nếu}\,\,x =  - 1
\end{array} \right.$ 
e) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^2} - 4}}{{x + 2}}&  &\text{nếu}\,\,x \ne  - 2\\
- 4&  &\text{nếu}\,\,x =  - 2
\end{array} \right.$  
f) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^2} - 2}}{{x - \sqrt 2 }}&  &\text{nếu}\,\,x \ne \sqrt 2 \\
2\sqrt 2&  &\text{nếu}\,\,x = \sqrt 2
\end{array} \right.$
Bài tập 2: Tìm m để hàm số liên tục tại trên tập xác định của chúng:
a) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\\
3x + m& &\text{nếu}\,\,x = 1
\end{array} \right.$  
b) $f(x) = \left\{ \begin{array}{l}
m &  & khi\,\,x = 0\\
\frac{{{x^2} - x - 6}}{{x(x - 3)}}&  &\text{nếu}\,\,x \ne 0,x \ne 3\\
n&  &\text{nếu}\,\,x = 3
\end{array} \right.$
c) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^2} - x - 2}}{{x - 2}}& &\text{nếu}\,\,x \ne 2\\
m& &\text{nếu}\,\,x = 2
\end{array} \right.$   
d) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^2} - x - 2}}{{x - 2}}& &\text{nếu}\,\,x \ne 2\\
m&  &\text{nếu}\,\,x = 2
\end{array} \right.$ 
e) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}}& &\text{nếu}\,\,x \ne 1\\
3x + m&  &\text{nếu}\,\,x = 1
\end{array} \right.$  
f) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} + x - 2}}{{x - 2}}& &\text{nếu}\,\,x \ne 2\\
m& &\text{nếu}\,\,x = 2
\end{array} \right.$
Dạng 2:$f(x) = \left\{ \begin{array}{l}
h(x,m)& &\text{nếu}\,\,x \ge {x_0}\\
g(x,m)& &\text{nếu}\,\,x < {x_0}
\end{array} \right.$ hoặc $f(x) = \left\{ \begin{array}{l}
h(x,m)& &\text{nếu}\,\,x > {x_0}\\
g(x,m)& &\text{nếu}\,\,x \le {x_0}
\end{array} \right.$

Phương pháp:
Bước 1: Tìm tập xác định của hàm số.
Bước 2: Khi $x \ne {x_0}$. Kiểm tra tính liên tục của hàm số $f(x)$ trên các khoàng.
Bước 3: Khi $x = {x_0}$.
- Tính   $f(x_0)$.
- Tính $\mathop {\lim }\limits_{x \to x_0^ + } f(x)$, $\mathop {\lim }\limits_{x \to x_0^ - } f(x)$.
- So sánh $\mathop {\lim }\limits_{x \to x_0^ + } f(x)$, $\mathop {\lim }\limits_{x \to x_0^ - } f(x)$ với $f(x_0)$ và rút ra kết luận tại điểm ${x_0}$.
Bước 4: Kết luận tính liên tục trên tập xác định của chúng.
Ví dụ 1: Xét tính liên tục của hàm số trên tập xác định của chúng: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{x - 1}}& &\text{nếu}\,\,x > 1\,\,\,\,\,\,\\
3& &\text{nếu}\,\,x \le 1
\end{array} \right.$
Hướng dẫn giải:
- Tập xác định: $D = \mathbb{R}$.
- Nếu $x > 1$, thì hàm số $f(x) = \frac{{2 - 7x + 5{x^2}}}{{x - 1}}$.
Đây là hàm phân thức hữu tỉ có tập xác định là $\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)$.
Vậy nó liên tục trên mỗi khoảng $\left( {1; + \infty } \right)$.
- Nếu $x < 1$, thì hàm số $f(x) = 1$.
Đây là hàm đa thức có tập xác định là $\mathbb{R}$.
Vậy nó liên tục trên mỗi khoảng $\left( { - \infty ;1} \right)$.
- Nếu $x = 1$
$f(1) = 3$
$\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2 - 7x + 5{x^2}}}{{{x^2} + x - 2}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to 1} (5x - 2) = 3$
$\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} 3 = 3$
Do: $\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1) = 3$ nên hàm số f(x) liên tục tại ${x_0} = 1$
Vậy: Hàm số $f(x)$ liên tục tại ${x_0} = 1$
- Vậy: Hàm số $f(x)$ liên tục trên $\mathbb{R}$.
Ví dụ 2: Xét tính liên tục của hàm số trên tập xác định của chúng: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{x - 1}}& &\text{nếu}\,\,x > 1\,\,\,\,\,\,\\
- 1& &\text{nếu}\,\,x \le 1
\end{array} \right.$
Hướng dẫn giải:
- Tập xác định: $D = \mathbb{R}$
- Nếu $x > 1$, thì hàm số $f(x) = \frac{{2 - 7x + 5{x^2}}}{{x - 1}}$.
Đây là hàm phân thức hữu tỉ có tập xác định là $\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)$.
Vậy nó liên tục trên khoảng $\left( {1; + \infty } \right)$.
- Nếu $x < 1$, thì hàm số $f(x) = 1$.
Đây là hàm đa thứccó tập xác định là $\mathbb{R}$.
Vậy nó liên tục trên mỗi khoảng $\left( { - \infty ;1} \right)$.
- Nếu $x = 1$
$f(1) =  - 1$
$\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2 - 7x + 5{x^2}}}{{{x^2} + x - 2}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to 1} (5x - 2) = 3$
$\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }}  - 1 =  - 1$
Do: $\mathop {\lim }\limits_{x \to {1^ + }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1)$ nên hàm số $f(x)$ gián đoạn tại ${x_0} = 1$
- Vậy: Hàm số $f(x)$ liên tục trên $\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)$ và gián đoạn tại ${x_0} = 1$.
Ví dụ 3: Tìm $m$ để hàm số liên tục trên tập xác định của chúng: $f(x)\,\, = \,\,\left\{ \begin{array}{l}
\frac{{2 - 7x + 5{x^2}}}{{{x^2} + x - 2}}& &\text{nếu}\,x > 1\,\,\,\,\,\,\\
- 3mx - 1& &\text{nếu}\,\,x \le 1
\end{array} \right.$
Hướng dẫn giải:
- Tập xác định: $D = \mathbb{R}$
- Nếu $x > 1$, thì hàm số $f(x) = \frac{{2 - 7x + 5{x^2}}}{{x - 1}}$.
Đây là hàm phân thức hữu tỉ có tập xác định là $\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)$.
Vậy nó liên tục trên khoảng $\left( {1; + \infty } \right)$.
- Nếu $x < 1$, thì hàm số $f(x) =  - 3mx - 1$.
Đây là hàm đa thứccó tập xác định là $\mathbb{R}$.
Vậy nó liên tục trên mỗi khoảng $\left( { - \infty ;1} \right)$.
- Nếu $x = 1$
$f(1) =  - 3m - 1$
$\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{2 - 7x + 5{x^2}}}{{{x^2} + x - 2}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {5x - 2} \right)}}{{\left( {x - 1} \right)}} = \mathop {\lim }\limits_{x \to 1} (5x - 2) = 3$
$\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} ( - 3mx - 1) =  - 3m – 1$.
Để hàm số $f(x)$ gián đoạn tại ${x_0} = 1$ khi $\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1) \Leftrightarrow m =  - \frac{4}{3}$.
- Vậy: Giá trị $m$ cần tìm là $m =  - \frac{4}{3}$.
Bài tập vận dụng:
Bài tập 1: Xét tính liên tục của hàm số trên tập xác định của chúng:
a) $f(x)\, = \,\left\{ \begin{array}{l}
\frac{{x - 5}}{{{x^2} - 25}}& &\text{nếu}\,\,x > 5\\
{(x - 5)^2} + \frac{1}{{10}}& &\text{nếu}\,x \le \,\,5
\end{array} \right.\,\,\,\,$  
b) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
1 - \cos x& &\text{nếu}\,x \le 0\,\,\,\,\,\,\\
\sqrt {x + 1}& &\text{nếu}\,\,x > \,0
\end{array} \right.$
d) $f(x) = \left\{ \begin{array}{l}
1 - x& &\text{nếu}\,\,\,x \le \,3\\
\frac{{{x^2} - 2x - 3}}{{2x - 6}}& &\text{nếu}\,\,\,\,\,x\, > \,3
\end{array} \right.$     
e) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^4} - 1}}{{{x^3} - 1}}& &\text{nếu}\,\,x < 1\\
- 2x& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,$ 
f) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} - 3{x^2} + 3x - 1}}{{x - 1}}& &\text{nếu}\,\,x < 1\\
- 2x& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,$ 
g) $f(x) = \left\{ \begin{array}{l}
{x^2} - 3x + 4& &\text{nếu}\,\,x < 2\\
5&  &\text{nếu}\,\,x = 2\\
2x + 1&  &\text{nếu}\,\,x > 2
\end{array} \right.$
h) $f(x) = \left\{ \begin{array}{l}
\frac{{12 - 6x}}{{{x^2} - 7x + 10}}& &\text{nếu}\,\,x \ne 2\\
2&  &\text{nếu}\,\,x = 2
\end{array} \right.$ 
Bài tập 2: Tìm m để hàm số liên tục trên tập xác định của chúng:
a) $f(x) = \left\{ \begin{array}{l}
{x^2} & &\text{nếu}\,\,x < 1\\
2mx - 3 & &\text{nếu}\,\,x \ge 1
\end{array} \right.$  
b) $f(x)\, = \,\left\{ \begin{array}{l}
\frac{{x - 5}}{{{x^2} - 25}}& &\text{nếu}\,\,x > 5\\
{(x - 5)^2} + 3m& &\text{nếu}\,\,x \le \,\,5
\end{array} \right.\,\,\,\,\,$
c) $f(x)\,\, = \,\,\left\{ \begin{array}{l}
1 - m\cos x& &\text{nếu}\,x \le 0\,\,\,\,\,\,\\
\frac{{{x^3} + x}}{x} & &\text{nếu}\,\,x > \,0
\end{array} \right.$ 
d) $f(x) = \left\{ \begin{array}{l}
\frac{{x - 1}}{{{x^3} - 1}}& &\text{nếu}\,\,x < 1\\
- 2mx + 1& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,$
e) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^4} - 1}}{{{x^3} - 1}}& &\text{nếu}\,\,x < 1\\
- 2(m - 1)x + 3& &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,$ 
f) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} - 3{x^2} + 3x - 1}}{{x - 1}}& &\text{nếu}\,\,x < 1\\
m - 2x & &\text{nếu}\,\,x \ge 1
\end{array} \right.\,\,$
g) $f(x) = \left\{ \begin{array}{l}
2{m^2} + 1& &\text{nếu}\,\,x \le 1\\
\frac{{{x^3} - {x^2} + 2x - 2}}{{x - 1}}& &\text{nếu}\,\,x > 1
\end{array} \right.$
h) $f(x) = \left\{ \begin{array}{l}
{x^2} + x &  & \text{nếu}\,\,x < 1\\
2 &  & \text{nếu}\,\,x = 1\\
mx + 1 &  & \text{nếu}\,\,x > 1
\end{array} \right.$
i) $f(x) = \left\{ \begin{array}{l}
{x^2} & &\text{nếu}\,\,x < 1\\
2mx - 3& &\text{nếu}\,\,x \ge 1
\end{array} \right.$   
j) $f(x) = \left\{ \begin{array}{l}
\frac{{{x^2} - 4x + 3}}{{x - 1}} & \text{nếu}\,\,x < 1\\
mx + 2\quad \quad \quad  & \text{nếu}\,\,x \ge 1
\end{array} \right.$
Vấn đề 3: Chứng minh phương trình có nghiệm:
Ví dụ 1: Chứng minh phương trình $3{x^3} + 2x - 2 = 0$ có nghiệm trong khoảng $\left( {0;1} \right)$
Hướng dẫn giải:
- Xét hàm số $f(x) = 3{x^3} + 2x - 2$là hàm đa thức, liên tục trên R tức liên tục trên khoảng $\left( {0;1} \right)$.
- Ta có: $f(0).f(1) = ( - 2).(3) =  - 6 < 0$.
- Do đó: $\exists c \in (0;1):\,f(c) = 0$, tức phương trình  có nghiệm $c \in \left( {0;1} \right)$.
Ví dụ 2: Chứng minh phương trình $2{x^3} - 6{x^2} + 5 = 0$ có ba nghiệm trong khoảng $\left( { - 1;3} \right)$.
Hướng dẫn giải:
- Xét hàm số $f(x) = 2{x^3} - 6{x^2} + 5$ liên tục trên R nên $f(x) = 2{x^3} - 6{x^2} + 5$ liên tục trên mọi đoạn.
- Ta có: $f( - 1) =  - 3 < 0$, $f(0) = 5 > 0$, $f(2) =  - 3 < 0$, $f(3) = 5 > 0$. Suy ra phương trình có nghiệm trong mỗi khoảng $\left( { - 1;0} \right)$, $\left( {0;2} \right)$, $\left( {2;3} \right)$.
- Vậy:  Phương trìn có ba nghiệm trên khoảng $\left( { - 1;3} \right)$
Ví dụ 3: Chứng minh rằng phương trình: $a{x^2} + bx + c = 0$ luôn có nghiệm $x \in \left[ {0;\frac{1}{3}} \right]$với $a \ne 0$ và $2a + 6b + 19c = 0$.
Hướng dẫn giải:
- Xét hàm số $f(x) = a{x^2} + bx + c$ liên tục trên $\mathbb{R}$.
Ta có: $f(0) = c$, $f(\frac{1}{3}) = \frac{1}{9}(a + 3b + 9c)$
Do đó: $f(0) + 18f(\frac{1}{3}) = 2a + 6b + 19c = 0$
Như thế:
- Nếu $f(0) = 0$ hay $f(\frac{1}{3}) = 0$ phương trình $f(x) = 0$ hiển nhiên có nghiệm thuộc $\left[ {0;\frac{1}{3}} \right]$.
- Nếu $f(0) \ne 0$ và $f(\frac{1}{3}) \ne 0$ ta thấy $f(0)f(\frac{1}{3}) < 0$.
Vậy: Phương trình $f(x) = 0$ có nghiệm trên $\left[ {0;\frac{1}{3}} \right]$.
Ví dụ 4: Với mọi $a,\,b,\,c \in R$, chứng minh phương trình: $a(x - b)(x - c) + b(x - c)(x - a) + c(x - a)(x - b) = 0$ luôn luôn có nghiệm.
Hướng dẫn giải:
- Xét hàm số $f(x) = a(x - b)(x - c) + b(x - c)(x - a) + c(x - a)(x - b)$ liên tục trên $\mathbb{R}$.
$f(a) = a(a - b)(a - c)$, $f(b) = b(b - c)(b - a)$, $f(c) = c(c - a)(c - b)$
Giả sử $a \le b \le c$ (tương tự các trường hợp sau)
- Nếu $a = 0$ hoặc $b = 0$hoặc $c = 0$ ta có $f(0) = 0$ do đó $x = 0$ là một nghiệm của phương trình.
- Nếu $b \ne 0$. Ít nhất có một trong hai trường hợp xảy ra:
+Với $a \le b < 0 \Rightarrow f(a)f(b) =  - ab{(a - b)^2}(a - c)(b - c) \le 0$
Suy ra phương trình có nghiệm trên đoạn $\left[ {a;b} \right]$
+Với $0 < b \le c \Rightarrow f(b)f(c) =  - bc{(a - b)^2}(b - a)(b - c) \le 0$
Suy ra phương trình có nghiệm trên đoạn $\left[ {b;c} \right]$.
Ví dụ 5: Chứng minh rằng nếu $2a + 3b + 6b = 0$ thì phương trình ${\rm{ata}}{{\rm{n}}^{\rm{2}}}x + b\tan x + c = 0$ có ít nhất một nghiệm trong khoảng $\left( {k\pi ;\frac{\pi }{4} + k\pi } \right)$ với $k \in Z$
Hướng dẫn giải:
- Xét hàm số ${\rm{f(x) = ata}}{{\rm{n}}^{\rm{2}}}x + b\tan x + c$
Đặt ${\rm{t = tanx, }}\,{{\rm{x}}_{\rm{0}}} \in \left( {k\pi ;\frac{\pi }{4} + k\pi } \right) \Rightarrow t \in \left( {0;1} \right)$. Khi đó ta có: ${\rm{f(t) = a}}{{\rm{t}}^{\rm{2}}} + bt + c$ có ít nhất một nghiệm ${{\rm{t}}_{\rm{0}}} \in {\rm{(0;1)}}$.
- Nếu ${\rm{a}} \ne {\rm{0,}}\,\,{\rm{c}} \ne {\rm{0}}$. Ta có: ${\rm{f(0)f}}\left( {\frac{{\rm{2}}}{{\rm{3}}}} \right){\rm{ = c}}\left( {\frac{{\rm{4}}}{{\rm{9}}}a + \frac{2}{3}b + c} \right) =  - \frac{{{c^2}}}{3} < 0$. Vậy phương trình ${\rm{f(t) = 0}}$ có nghiệm ${{\rm{t}}_{\rm{0}}} \in \left( {0;\frac{2}{3}} \right)$.
- Nếu ${\rm{c = 0}}$, lúc đó phương trình  có nghiệm ${{\rm{t}}_{\rm{1}}} = 0$, ${{\rm{t}}_{\rm{2}}} = \frac{2}{3}$ có nghĩa ${{\rm{t}}_{\rm{2}}} = \frac{2}{3} \in (0;1)$.
- Nếu ${\rm{a = 0}}$. Ta có: $\left\{ \begin{array}{l}
{\rm{bt + c = 0}}\\
{\rm{3(b + 2c) = 0}}
\end{array} \right.$
+Với ${\rm{b = c = 0}}$ phương trình ${\rm{f(t) = 0}}$ có vô số nghiệm nên tất nhiên sẽ có một nghiệm thuộc ${{\rm{t}}_{\rm{0}}} \in {\rm{(0;1)}}$.
+Với ${\rm{b}} \ne {\rm{0,}}\,\,{\rm{t  =   -  }}\frac{{\rm{c}}}{{\rm{b}}} = \frac{1}{2} \in \left( {0;1} \right)$.
- Tóm lại: $\forall a,\,b,\,c$ thỏa mãn $2a + 3b + 6b = 0$ thì phương trình ${\rm{f(t) = 0}}$ có ít nhất một nghiệm ${{\rm{t}}_{\rm{0}}} \in {\rm{(0;1)}}$, tức là $2a + 3b + 6b = 0$ thì phương trình ${\rm{ata}}{{\rm{n}}^{\rm{2}}}x + b\tan x + c = 0$ có ít nhất một nghiệm trong khoảng $\left( {k\pi ;\frac{\pi }{4} + k\pi } \right)$ với $k \in Z$.
Bài tập vận dụng:
Bài tập 1: Chứng minh rằng các phương trình sau có 3 nghiệm phân biệt:
a) ${x^3} - 3x + 1 = 0$  
b) ${x^3} + 6{x^2} + 9x + 1 = 0$
c) $2x + 6\sqrt[3]{{1 - x}} = 3$
Bài tập 2: Chứng minh rằng các phương trình sau luôn có nghiệm:
a) ${x^5} - 3x + 3 = 0$  
b) ${x^5} + x - 1 = 0$  
c) ${x^4} + {x^3} - 3{x^2} + x + 1 = 0$
Bài tập 3: Chứng minh rằng phương trình: ${x^5} - 5{x^3} + 4x - 1 = 0$ có 5 nghiệm trên $(–2; 2)$.
Bài tập 4: Chứng minh rằng các phương trình sau luôn có nghiệm với mọi giá trị của tham số:
a) $m{(x - 1)^3}(x - 2) + 2x - 3 = 0$   
b) ${x^4} + m{x^2} - 2mx - 2 = 0$
c) $a(x - b)(x - c) + b(x - c)(x - a) + c(x - a)(x - b) = 0$
d) $(1 - {m^2}){(x + 1)^3} + {x^2} - x - 3 = 0$
e) $\cos x + m\cos 2x = 0$    
f) $m(2\cos x - \sqrt 2 ) = 2\sin 5x + 1$
Bài tập 5: Chứng minh rằng phương trình:
a) ${x^3} + 6{x^2} + 9x + 1 = 0$ có 3 nghiệm phân biệt.
b) $m{(x - 1)^3}({x^2} - 4) + {x^4} - 3 = 0$ luôn có ít nhất 2 nghiệm với mọi giá trị của m.
c) $({m^2} + 1){x^4} - {x^3} + 1 = 0$ luôn có ít nhất 2 nghiệm nằm trong khoảng $\left( { - 1;\sqrt 2 } \right)$ với mọi m.
d) ${x^3} + m{x^2} - 1 = 0$ luôn có 1 nghiệm dương.
e) ${x^4} - 3{x^2} + 5x - 6 = 0$ có nghiệm trong khoảng $(1; 2)$.
Bài tập 6: Chứng minh các phương trình sau luôn có nghiệm:
a) $a{x^2} + bx + c = 0$  với  $2a + 3b + 6c = 0$
b) $a{x^2} + bx + c = 0$ với  $a + 2b + 5c = 0$
c) ${x^3} + a{x^2} + bx + c = 0$
Bài tập 7: Cho $m > 0$ và $a$, $b$, $c$ là 3 số thực thoả mãn:  $\frac{a}{{m + 2}} + \frac{b}{{m + 1}} + \frac{c}{m} = 0$. Chứng minh rằng phương trình:  $f(x) = a{x^2} + bx + c = 0$ có ít nhất một nghiệm thuộc khoảng $(0; 1)$.
HD:  Xét 2 trường hợp $c = 0$; $c \ne 0$. Với $c \ne 0$ thì $f(0).f\left( {\frac{{m + 1}}{{m + 2}}} \right) =  - \frac{{{c^2}}}{{m(m + 2)}} < 0$

File gửi kèm


Bài viết đã được chỉnh sửa nội dung bởi nguyenthanhhung1985: 05-07-2017 - 00:37

Nguyễn Thành Hưng


#2 DOTOANNANG

DOTOANNANG

    Thượng úy

  • Thành viên
  • 1226 Bài viết
  • Giới tính:Nam
  • Đến từ:T H P T Ngô Gia Tự ( "bắp nhà chùa" ) , Phú Yên

Đã gửi 13-01-2018 - 16:57

Cảm ơn anh nhiều







0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh