Đến nội dung


Hình ảnh
- - - - -

Cập nhật list Những bài toán trong tuần (400-500)


  • Chủ đề bị khóa Chủ đề bị khóa
Chủ đề này có 3 trả lời

#1 Ispectorgadget

Ispectorgadget

    Nothing

  • Quản trị
  • 2930 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Nơi tình yêu bắt đầu
  • Sở thích:Làm "ai đó" vui

Đã gửi 17-03-2017 - 20:16

$\boxed{\text{Bài toán 400}}$

Cho tam giác $ABC$ nội tiếp $(O)$, $I$ là trung điểm cạnh $BC$. Phân giác trong $AD$  ($D$ trên cạnh $BC$),hai điểm $P,Q$ trên cạnh $AD$ thoả mãn $\angle CBP=\angle ABQ$. $M$ là hình chiếu của $Q$ trên $BC$, $N$ đối xứng với $I$ qua $AD$. Chứng minh $MN \perp OP$

 

$\boxed{\text{Bài toán 401}}$

Cho $a_{1}, a_{2},..., a_{n}\in \mathbb{R}$ thỏa mãn:

$a_{1}+a_{2}+...+a_{n}\geq n^{2}$

$a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\leq n^{3}+1$

Chứng minh: $n-1\leq a_{k}\leq n+1 \forall 1\leq k\leq n$

 

$\boxed{\text{Bài toán 402}}$

Cho các đường tròn $(O_{1};R_{1});(O_{2};R_{2})$ sao cho tiếp tuyến chung ngoài $M_{1}M_{2}$ vuông góc với tiếp tuyến chung trong $N_{1}N_{2}$ tại A. Gọi tiếp tuyến chung trong thứ hai là $P_{1}P_{2}$ (các tiếp điểm $M_{1};N_{1};P_{1}\in (O_{1})$ và các tiếp điểm $M_{2};N_{2};P_{2}\in (O_{2})$). Tính diện tích $\Delta AP_{1}P_{2}$ theo $R_{1};R_{2}$. 

 

$\boxed{\text{Bài toán 403}}$

 

Cho tam giác $ABC$. Một điểm O nằm trong tam giác thỏa mãn $OA= OB + OC$. Gọi $Y,Z$ lần lượt là điểm chính giữa các cung $AOC$ và $AOB$ của đường tròn ngoại tiếp các tam giác AOC và $AOB$. Chứng minh rằng: $(BOY)$ tiếp xúc với $(COZ)$.

 

$\boxed{\text{Bài toán 404}}$

Cho $a_1;a_2;...;a_n$ là dãy các số nguyên không âm. Với $k=1,2,....,n$,đặt $ m_k =\max_{1\le l\le k}\frac{a_{k-l+1}+a_{k-l+2}+\cdots+a_k}{l}. $

Chứng minh rằng với mỗi $\alpha>0$,số giá trị của $k$ thỏa mãn $m_k>\alpha$ luôn bé hơn $\frac{a_1+a_2+...+a_n}{\alpha}$


►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫ Giao diện website du lịch miễn phí Những bí ẩn chưa biết

#2 Ispectorgadget

Ispectorgadget

    Nothing

  • Quản trị
  • 2930 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Nơi tình yêu bắt đầu
  • Sở thích:Làm "ai đó" vui

Đã gửi 28-05-2017 - 23:44

Khảo sát sự hội tụ của dãy số $x_n$ với
$$\begin{cases}x_0 \geq 0 \\ x_{n+1}=\frac{6}{2+x_n^2} \end{cases} \ \ \ n \geq 0$$
 
Cho $P(x)\in \mathbb{Z}[x], \text{deg}P\geq 2$.

CMR: Tồn tại $m\in \mathbb{Z^+}$ để $P(m!)$ là hợp số.

 

$\boxed{\text{Bài toán 407}}$

Cho hai tam giác $ABC$ ($AB=AC$) và $DEF$ ($DE=DF$) trong đó $B$, $C$, $E$, $F$ thẳng hàng, $BC>EF$. Hãy vẽ một đường thẳng song song với $BC$ sao cho hai đoạn thẳng bị hai cạnh bên của mỗi tam giác cắt ra là bằng nhau.

 

$\boxed{\text{Bài toán 408}}$

CMR với mọi $x\in \mathbb{R}$ ta luôn có:$3\leq 2^{\left | \sin x \right |}+2^{\left | \cos x \right |}\leq 2^{\frac{2+\sqrt{2}}{2}}$

 

$\boxed{\text{Bài toán 409}}$

Xét khai triển hàm số sau:

$$f_{k}(x)=1-\frac{x^2}{k}+\frac{x^4}{2!k(k+1)}-\frac{x^6}{3!k(k+1)(k+2)}+....$$
Chứng minh với mỗi số thực $x$,ta có $\lim_{k \to +\infty}f_{k}(x)=1$.

$\boxed{\text{Bài toán 410}}$

Chứng minh: $[kx]+[x+\frac{k}{k+1}]= [kx+x]$ ( $k\epsilon \mathbb{N}$)

 

$\boxed{\text{Bài toán 411}}$

Một tỷ phú có $100$ chiếc xe hơi đắt tiền.Cứ mỗi ngày anh ta chọn ngẫu nhiên một chiếc để sử dụng.

Tính xác suất để trong $100$ ngày liên tiếp có ít nhất $30$ chiếc xe được chọn từ $2$ lần trở lên ?


►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫ Giao diện website du lịch miễn phí Những bí ẩn chưa biết

#3 Ispectorgadget

Ispectorgadget

    Nothing

  • Quản trị
  • 2930 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Nơi tình yêu bắt đầu
  • Sở thích:Làm "ai đó" vui

Đã gửi 18-07-2017 - 17:42

$\boxed{\text{Bài toán 412}}$

Cho các số thực $a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0$

Thỏa mãn $\left\{ \begin{array}{l}a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0 \\ a_{1}+a_{2}\leq 2002\\a_{3}+a_{4}+...+a_{100}\leq 2002  \end{array} \right.$

Tìm giá trị lớn nhất của biểu thức : $S=a{_{1}}^{2}+a{_{2}}^{2}+...+a{_{100}}^{2}$.Tìm các số $a_{1},a_{2},...a_{100}$ tương ứng.

 

$\boxed{\text{Bài toán 413}}$

Cho tam giác $ABC$. Chứng minh luôn tồn tại một tam giác đều có các trung tuyến đi qua các đỉnh tam giác $ABC$.

 

 

$\boxed{\text{Bài toán 414}}$

Gọi tổng của một tập hợp là tổng các phần tử của tập hợp đó. Gọi S là tập các số nguyên dương không vượt quá 15. Giả sử rằng không có 2 tập con nào của S có tổng bằng nhau. Tìm GTLN của tổng S?

 

$\boxed{\text{Bài toán 415}}$

Cho dãy số thực $x_{n}$ được xác định bởi: $x_{0}=1,x_{n+1}=2+\sqrt{x_{n}}-2\sqrt{1+\sqrt{x_{n}}}\forall n\epsilon N$

Ta xác định dãy $y_{n}$ bởi công thức $y_{n}=\sum_{i=1}^{n}x_{i}.2^{i},\forall n\epsilon N^{*}$. Tìm công thức tổng quát của dãy $y_{n}$

 

 

$\boxed{\text{Bài toán 416}}$

Cho đa giác lồi $A_{1}A_{2}...A_{n}$, O là tâm tỉ cự hệ điểm $(A_{1};A_{2};...;A_{n})$ với hệ số (1;1;...;1). Đặt $d=OA_{1}+OA_{2}+...+OA_{n}$; p là chu vi đa giác.

CMR: 

+) Nếu n chẵn thì $\frac{4}{n}d\geq p$

+) Nếu n lẻ thì $p\geq \frac{4nd}{n-1}$

 

$\boxed{\text{Bài toán 417}}$

Cho đường tròn (O;13) và hai dây cung AB, CD cố định ko cắt nhau. Xét điểm I trên đoạn CD. Cho AI, BI cắt (O) tại E, F. AF, BE cắt CD tại M, N. BIết ID = 10, IN = 6 và $3CM^{2}+5CM=MI^{2}$. Tính độ dài dây CD.

 

$\boxed{\text{Bài toán 418}}$

Cho $a_i\ge 1; i=1,2,...,n$

Chứng minh rằng :
$$\prod_{i=1}^{n} \left (a_i+1\right ) \ge \dfrac{2^n}{n+1}\left [\left (\sum_{i=1}^{n} a_i\right ) +1\right ]$$


►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫ Giao diện website du lịch miễn phí Những bí ẩn chưa biết

#4 Ispectorgadget

Ispectorgadget

    Nothing

  • Quản trị
  • 2930 Bài viết
  • Giới tính:Không khai báo
  • Đến từ:Nơi tình yêu bắt đầu
  • Sở thích:Làm "ai đó" vui

Đã gửi 24-08-2017 - 17:48

$\boxed{\text{Bài toán 419}}$

Cho $p\in \mathbb{R}^+$ và $k\in \mathbb{R}^+$. Giả sử đa thức $F(x)=x^4+a_3x^3+a_2x^2+a_1x+k^4$ với các hệ số thực có 4 nghiệm âm. Chứng minh $$F(p)\ge (p+k)^4.$$

$\boxed{\text{Bài toán 420}}$

Cho $n$ số nguyên dương $1\leq a_1<a_2<....<a_n<2n$ thỏa mãn $a_i \not | \ a_j \forall i\neq j$

Chứng minh rằng $a_1\geq 2^{[log_{3}(2n)]}$   (Với [ ] là kí hiệu phần nguyên)

 

$\boxed{\text{Bài toán 421}}$

Cho $ABC$ là một tam giác và $M,N,P$ các điểm nằm trên cạnh $BC,CA,AB$. Lấy $\Delta_A, \Delta_B, \Delta_C$ là các đường thẳng đi qua $M,N,P$ và $\widehat{BM\Delta_A}=\alpha, \widehat{CN\Delta_B}=\beta, \widehat{AN\Delta_C}=\theta$ (các góc nằm trong tam giác) sao cho $\alpha+\beta+\theta=270^{o}$. Tìm điều kiện cần và đủ của mệnh đề sau:

"$\Delta_A, \Delta_B, \Delta_C$ đồng quy".

 

 

$\boxed{\text{Bài toán 422}}$

Cho dãy $X_{n}$ thỏa mãn $X_{1}=1$ và $X_{n+1}= \sin X_{n}$

Chứng minh rằng $\lim \sqrt{n}.X_{n}=1$

 

$\boxed{\text{Bài toán 423}}$

Cho $n$ là số nguyên dương lẻ và $u$ là một ước nguyên dương lẻ của $3^n+1$

Chứng minh $u-1$ chia hết cho $3$

 

$\boxed{\text{Bài toán 424}}$

Xét dãy đa thức $P_1(x)=4x^{3}-3x;P_n(x)=P_1(P_{n-1}(x)) \forall n \geq 2$.

Chứng minh $P_n(x)=x$ có đúng $3^{n}$ nghiệm thực phân biệt $\forall n \in \mathbb N *$

 

$\boxed{\text{Bài toán 425}}$

Cho dãy $\{x_n\}_{n\in \mathbb{N}}$ với $x_0\ge 0$ và xác định bởi $\sqrt{x_n}=\frac{x_n-x_{n+1}+1}{x_{n+1}-x_n}$. Tính $\lim\limits_{n\to \infty} \frac{x_n^6}{n^4}.$

 

$\boxed{\text{Bài toán 426}}$

 

Cho $a,b,c$ là các số thực dương thỏa mãn $abc=1$.

Chứng minh rằng:

$$\left ( \frac{2}{\sqrt{\frac{1+a^{2}}{2}}+\frac{2a}{1+a}} \right )^{\frac{1}{3}}+\left ( \frac{2}{\sqrt{\frac{1+b^{2}}{2}}+\frac{2b}{1+b}} \right )^{\frac{1}{3}}+\left ( \frac{2}{\sqrt{\frac{1+c^{2}}{2}}+\frac{2c}{1+c}} \right )^{\frac{1}{3}}\leq 3$$

 

$\boxed{\text{Bài toán 427}}$

Cho 2 đường tròn $(O;R)$ và $(O';R')$ tiếp xúc ngoài, trong đó $R<R'$. Gọi $d$ là tiếp tuyến chung ngoài của 2 đường tròn. Gọi $A,B$ lần lượt là tiếp điểm của $(O),(O')$ với $d$. Trên tia $BO'$ lấy $F$ sao cho $BF=\sqrt{R.R'}$.

 

Từ $F$ kẻ đường thẳng song song $AB$ cắt $OO'$ tại $K$. Hạ $KH \perp AB$ ($H\in AB$). Trên tia $KH$ lấy điểm $M$ sao cho $HM=4\sqrt{R.R'}$.

 

Vẽ đường tròn ngoại tiếp $\triangle ABM$. Đường tròn này cắt $HK$ tại $I$.

 

Chứng minh rằng $I$ là tâm đường tròn tiếp xúc với $(O),(O')$ và $AB$.


►|| The aim of life is self-development. To realize one's nature perfectly - that is what each of us is here for. ™ ♫ Giao diện website du lịch miễn phí Những bí ẩn chưa biết




3 người đang xem chủ đề

0 thành viên, 3 khách, 0 thành viên ẩn danh