Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

$f(x^2-f(y)^2)=xf(x)-y^2$

phương trình hàm

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Nghiapnh1002

Nghiapnh1002

    Trung sĩ

  • Thành viên
  • 111 Bài viết
  • Giới tính:Nam

Đã gửi 11-08-2017 - 10:49

Tìm tất cả các hàm số : $f:\mathbb{R}\rightarrow \mathbb{R}$ sao cho:

$f(x^2-f(y)^2)=xf(x)-y^2$



#2 Kamii0909

Kamii0909

    Trung sĩ

  • Thành viên
  • 158 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT Chuyên Nguyễn Huệ
  • Sở thích:Mathematic, Light Novel

Đã gửi 18-08-2017 - 18:25

Đặt $f(0)=a$
$P(x,y): f(x^2-f(y)^2)=xf(x)-y^2$
$P(-x,y)-P(x,y) \Rightarrow f(x)=-f(-x),\forall x \neq 0$

$P(0,0): f(-a^2)=0 \Rightarrow f(a^2)=0$

$P(x,-a^2): f(x^2)=xf(x)-a^4$

$P(1,-a^2):-a^4=0 \Leftrightarrow a=0$

Kết hợp lại ta có $f(x^2)=xf(x)$ và $f(x)=-f(-x),\forall x$

$P(0,y): f(-f(y)^2)=-y^2$

$P(f(x),x): f(x)f(f(x))=x^2$

$P(f(x),y): f(f(x)^2-f(y)^2)=x^2-y^2$ 

Do đó $f$ toàn ánh. 

$P(x,y): f(x^2-f(y)^2)=f(x^2)+f(-f(y)^2)$

Mà $x^2$ và $f(y)^2$ toàn ánh trên $/mathBB{R^+}$ nên 

$f(x-y)=f(x)+f(-y)=f(x)-f(y),\forall x,y \geq 0 (1)$

Từ $(1)$ thay $x \rightarrow x+y$ kết hợp $f$ lẻ ta có

$f(x+y)=f(x)+f(y),\forall x,y$

Từ đây ta tính $f((x+1)^2 )$ theo 2 cách.

$f((x+1)^2)=(x+1)f(x+1)=(x+1)f(x)+(x+1)f(1)$

$f((x+1)^2)=f(x^2)+f(2x)+f(1)=xf(x)+2f(x)+f(1)$

Do đó $f(x)=f(1)x$. Thay ngược lại có $f(1)=\pm 1$. 

Thử lại cả 2 hàm thoả mãn. Kết luận...



#3 Shaddoll

Shaddoll

    Lính mới

  • Thành viên mới
  • 6 Bài viết

Đã gửi 07-01-2018 - 21:15

Đặt $f(0)=a$
$P(x,y): f(x^2-f(y)^2)=xf(x)-y^2$
$P(-x,y)-P(x,y) \Rightarrow f(x)=-f(-x),\forall x \neq 0$

$P(0,0): f(-a^2)=0 \Rightarrow f(a^2)=0$

$P(x,-a^2): f(x^2)=xf(x)-a^4$

$P(1,-a^2):-a^4=0 \Leftrightarrow a=0$

Kết hợp lại ta có $f(x^2)=xf(x)$ và $f(x)=-f(-x),\forall x$

$P(0,y): f(-f(y)^2)=-y^2$

$P(f(x),x): f(x)f(f(x))=x^2$

$P(f(x),y): f(f(x)^2-f(y)^2)=x^2-y^2$ 

Do đó $f$ toàn ánh. 

$P(x,y): f(x^2-f(y)^2)=f(x^2)+f(-f(y)^2)$

Mà $x^2$ và $f(y)^2$ toàn ánh trên $/mathBB{R^+}$ nên 

$f(x-y)=f(x)+f(-y)=f(x)-f(y),\forall x,y \geq 0 (1)$

Từ $(1)$ thay $x \rightarrow x+y$ kết hợp $f$ lẻ ta có

$f(x+y)=f(x)+f(y),\forall x,y$

Từ đây ta tính $f((x+1)^2 )$ theo 2 cách.

$f((x+1)^2)=(x+1)f(x+1)=(x+1)f(x)+(x+1)f(1)$

$f((x+1)^2)=f(x^2)+f(2x)+f(1)=xf(x)+2f(x)+f(1)$

Do đó $f(x)=f(1)x$. Thay ngược lại có $f(1)=\pm 1$. 

Thử lại cả 2 hàm thoả mãn. Kết luận...

Dòng f(xy)=f(x)+f(y)=f(x)f(y),x,y0(1) là sao vậy bạn, làm sao để suy ra được


Bài viết đã được chỉnh sửa nội dung bởi Shaddoll: 07-01-2018 - 21:28






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh