Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh tập $\mathbb{N^*}\setminus P $ là tập hữu hạn


  • Please log in to reply
Chủ đề này có 2 trả lời

#1 Minhnksc

Minhnksc

    Sĩ quan

  • Điều hành viên OLYMPIC
  • 300 Bài viết
  • Giới tính:Nam
  • Đến từ:Các bạn biết là từ đâu rồi đấy :D
  • Sở thích:vinahey :V

Đã gửi 22-08-2017 - 16:01

Cho tập hợp $P$ các số nguyên dương thỏa mãn hai điều kiện sau:

    i) $\forall a;b \in P$ thì $a+b \in P$

    ii)$\forall q \in P , q>1, \exists c\in P$ sao cho $c$ không chia hết cho  $q$

Chứng minh tập $\mathbb{N^*} \setminus P $ là tập hữu hạn


Bài viết đã được chỉnh sửa nội dung bởi Minhnksc: 26-08-2017 - 21:58

  :D :D  :D 

“Nhà khoa học không nghiên cứu tự nhiên vì việc đó có ích; Anh ta nghiên cứu nó vì anh ta thấy thích thú và anh ta thấy thích thú vì nó đẹp. Nếu tự nhiên không đẹp thì nó không đáng để biết, và cuộc sống không đáng để sống” :D  :D  :D 


#2 redfox

redfox

    Trung sĩ

  • Thành viên
  • 100 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:wild animal, furry

Đã gửi 24-08-2017 - 17:52

Theo mình nghĩ ii) là $\forall q\in N,q>1,\exists c\in P,c\not\equiv 0(mod\; q)$ (nếu ii) như trên thử xét $P= \left \{ 4,6,8,...,2k,... \right \}$, và lấy $c= 4q+2$)

Để ý nếu $a,b\in P\Rightarrow ax+by\in P,\forall x,y\in N$ (theo i)). Áp dụng Sylvester ta có nếu $a,b\in P,gcd(a,b)=d\Rightarrow xd\in P,\forall x\in N,x\geq \frac{(a-d)(b-d)}{d^2}$. (*)

Gọi $d=min(gcd(a,b)|a,b\in P)$ theo (*) tồn tại $X$ sao cho $dx\in P,\forall x\in N,x\geq X$.

Giả sử $d>1$. Theo ii) lấy $p=d$ ta có tồn tại $c\in P$ không chia hết cho $d$. Đặt $d'=gcd(c,d)< d$. Lấy $x=cy+1\geq X$ ta có $xd,c\in P,gcd(xd,c)=gcd(cyd+d,c)=d'<d$ (trái với cách chọn $d$. Vậy $d=1$, theo (*) ta dễ có $N/P$ hữu hạn.

(Q.E.D)



#3 Minhnksc

Minhnksc

    Sĩ quan

  • Điều hành viên OLYMPIC
  • 300 Bài viết
  • Giới tính:Nam
  • Đến từ:Các bạn biết là từ đâu rồi đấy :D
  • Sở thích:vinahey :V

Đã gửi 26-08-2017 - 21:57

Theo mình nghĩ ii) là $\forall q\in N,q>1,\exists c\in P,c\not\equiv 0(mod\; q)$ 

 

Đúng rồi; mình viết thiếu đề bài


  :D :D  :D 

“Nhà khoa học không nghiên cứu tự nhiên vì việc đó có ích; Anh ta nghiên cứu nó vì anh ta thấy thích thú và anh ta thấy thích thú vì nó đẹp. Nếu tự nhiên không đẹp thì nó không đáng để biết, và cuộc sống không đáng để sống” :D  :D  :D 





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh