Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Có tồn tại vô hạn số tự nhiên q thỏa mãn $\left[\alpha q^2 \right]\vdots q$ hay không


  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Minhnksc

Minhnksc

    Sĩ quan

  • Điều hành viên OLYMPIC
  • 300 Bài viết
  • Giới tính:Nam
  • Đến từ:Các bạn biết là từ đâu rồi đấy :D
  • Sở thích:vinahey :V

Đã gửi 26-08-2017 - 10:51

Có tồn tại vô hạn số tự nhiên q thỏa mãn $\left[\alpha q^2 \right]\vdots q$ hay không? Với $\alpha$ là một số vô tỉ cho trước


  :D :D  :D 

“Nhà khoa học không nghiên cứu tự nhiên vì việc đó có ích; Anh ta nghiên cứu nó vì anh ta thấy thích thú và anh ta thấy thích thú vì nó đẹp. Nếu tự nhiên không đẹp thì nó không đáng để biết, và cuộc sống không đáng để sống” :D  :D  :D 


#2 redfox

redfox

    Trung sĩ

  • Thành viên
  • 100 Bài viết
  • Giới tính:Nam
  • Đến từ:PTNK - ĐHQG TPHCM
  • Sở thích:wild animal, furry

Đã gửi 01-09-2017 - 17:25

Câu trả lời là có. Viết $\alpha =\left [ x_0;x_1,x_2... \right ]$ (liên phân số vô hạn). Xét dãy $p_{-2}=0,p_{-1}=1,p_n=x_np_{n-1}+p_{n-2},q_{-2}=1,q_{-1}=0,q_n=x_nq_{n-1}+q_{n-2}$. Khi đó $0<\alpha -\frac{p_{2k}}{q_{2k}}<\frac{1}{q_{2k}^2}\Rightarrow p_{2k}q_{2k}<\alpha q_{2k}^2<p_{2k}q_{2k}+1\Rightarrow \left \lfloor \alpha q_{2k}^2 \right \rfloor=p_{2k}q_{2k}$ (chứng minh chi tiết epsilon 4 p25-36)


Bài viết đã được chỉnh sửa nội dung bởi redfox: 01-09-2017 - 17:26





1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh