Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Viết phương trình đường thẳng qua $x_1;x_2$

chú nghiêm idol

  • Please log in to reply
Chủ đề này có 7 trả lời

#1 caybutbixanh

caybutbixanh

    Trung úy

  • Thành viên
  • 888 Bài viết
  • Giới tính:Không khai báo

Đã gửi 09-09-2017 - 22:32

Bài toán : Cho hàm số $y=\frac{x^2+mx+n}{x^2+1}$ có hai điểm cực trị $x_1;x_2.$ Viết phương trình đường thẳng đi qua hai điểm đã cho.


KẺ MẠNH CHƯA CHẮC ĐÃ THẮNG



MÀ KẺ THẮNG MỚI CHÍNH LÀ KẺ MẠNH!.



(FRANZ BECKEN BAUER)




ÔN THI MÔN HÓA HỌC TẠI ĐÂY.


#2 chanhquocnghiem

chanhquocnghiem

    Thiếu tá

  • Thành viên
  • 2075 Bài viết
  • Giới tính:Nam
  • Đến từ:Vũng Tàu
  • Sở thích:Toán,Thiên văn,Lịch sử

Đã gửi 11-09-2017 - 17:01

Cho hàm số $y=\frac{x^2+mx+n}{x^2+1}$ có hai điểm cực trị $x_1;x_2.$ Viết phương trình đường thẳng đi qua hai điểm đã cho.

$y=\frac{x^2+mx+n}{x^2+1}=1+\frac{mx+n-1}{x^2+1}$

$y'=\frac{m(x^2+1)-2x(mx+n-1)}{(x^2+1)^2}$

$y'=0\Leftrightarrow m(x^2+1)=2x(mx+n-1)\Leftrightarrow mx^2+2(n-1)x-m=0$ (*)

Để tìm phương trình đi qua 2 điểm cực trị, ta biến đổi như sau :

$y=\frac{mx^2+m^2x+mn}{mx^2+m}=\frac{(m^2-2n+2)x+mn+m}{2(1-n)x+2m}=$

$=\frac{p[mx^2+2(n-1)x-m]+(m^2-2n+2)x+mn+m}{2(1-n)x+2m}$ (với $p$ là một số thích hợp nào đó mà ta phải tính)

$=\frac{pmx^2+[m^2+(n-1)(n-1+p)]x}{2(1-n)x+2m}+\frac{n-p+1}{2}$

Vậy nếu phương trình đt đi qua 2 điểm cực trị có dạng $ax+b$ thì :

$\left\{\begin{matrix}\frac{pm}{2(1-n)}=\frac{m^2+(n-1)(n-1+p)}{2m}=a\\\frac{n-p+1}{2}=b \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}p=1-n\\a=\frac{m}{2}\\b=n \end{matrix}\right.$

Phương trình đt đi qua 2 điểm cực trị là $y=\frac{m}{2}\ x+n$.


...

Ðêm nay tiễn đưa

Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...

 

http://www.wolframal...-15)(x^2-8x+12)


#3 caybutbixanh

caybutbixanh

    Trung úy

  • Thành viên
  • 888 Bài viết
  • Giới tính:Không khai báo

Đã gửi 12-09-2017 - 16:07

$y=\frac{x^2+mx+n}{x^2+1}=1+\frac{mx+n-1}{x^2+1}$

$y'=\frac{m(x^2+1)-2x(mx+n-1)}{(x^2+1)^2}$

$y'=0\Leftrightarrow m(x^2+1)=2x(mx+n-1)\Leftrightarrow mx^2+2(n-1)x-m=0$ (*)

Để tìm phương trình đi qua 2 điểm cực trị, ta biến đổi như sau :

$y=\frac{mx^2+m^2x+mn}{mx^2+m}=\frac{(m^2-2n+2)x+mn+m}{2(1-n)x+2m}=$

$=\frac{p[mx^2+2(n-1)x-m]+(m^2-2n+2)x+mn+m}{2(1-n)x+2m}$ (với $p$ là một số thích hợp nào đó mà ta phải tính)

$=\frac{pmx^2+[m^2+(n-1)(n-1+p)]x}{2(1-n)x+2m}+\frac{n-p+1}{2}$

Vậy nếu phương trình đt đi qua 2 điểm cực trị có dạng $ax+b$ thì :

$\left\{\begin{matrix}\frac{pm}{2(1-n)}=\frac{m^2+(n-1)(n-1+p)}{2m}=a\\\frac{n-p+1}{2}=b \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}p=1-n\\a=\frac{m}{2}\\b=n \end{matrix}\right.$

Phương trình đt đi qua 2 điểm cực trị là $y=\frac{m}{2}\ x+n$.

Dạ thưa chú, cháu chưa hiểu lắm đoạn đồng nhất quan hệ giữa a,b,m,n.........làm sao để được ra như thế ạ ??


KẺ MẠNH CHƯA CHẮC ĐÃ THẮNG



MÀ KẺ THẮNG MỚI CHÍNH LÀ KẺ MẠNH!.



(FRANZ BECKEN BAUER)




ÔN THI MÔN HÓA HỌC TẠI ĐÂY.


#4 chanhquocnghiem

chanhquocnghiem

    Thiếu tá

  • Thành viên
  • 2075 Bài viết
  • Giới tính:Nam
  • Đến từ:Vũng Tàu
  • Sở thích:Toán,Thiên văn,Lịch sử

Đã gửi 12-09-2017 - 19:58

Dạ thưa chú, cháu chưa hiểu lắm đoạn đồng nhất quan hệ giữa a,b,m,n.........làm sao để được ra như thế ạ ??

Ta có :

$y=\frac{pmx^2+[m^2+(n-1)(n-1+p)]x}{2(1-n)x+2m}+\frac{n-p+1}{2}$

$=\frac{pmx+m^2+(n-1)(n-1+p)}{2(1-n)x+2m}\ x+\frac{n-p+1}{2}$

Mà đó cũng chính là phương trình đường thẳng đi qua 2 điểm cực trị, có dạng $y=ax+b$, nên :

$b=\frac{n-p+1}{2}$

Còn $a=\frac{pmx+m^2+(n-1)(n-1+p)}{2(1-n)x+2m}$

$\Rightarrow a[2(1-n)x+2m]=pmx+m^2+(n-1)(n-1+p)\Rightarrow a=\frac{pm}{2(1-n)}=\frac{m^2+(n-1)(n-1+p)}{2m}$


Bài viết đã được chỉnh sửa nội dung bởi chanhquocnghiem: 14-09-2017 - 06:57

...

Ðêm nay tiễn đưa

Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...

 

http://www.wolframal...-15)(x^2-8x+12)


#5 caybutbixanh

caybutbixanh

    Trung úy

  • Thành viên
  • 888 Bài viết
  • Giới tính:Không khai báo

Đã gửi 13-09-2017 - 22:55

Ta có :

$y=\frac{pmx^2+[m^2+(n-1)(n-1+p)]x}{2(1-n)x+2m}+\frac{n-p+1}{2}$

$=\frac{pmx+m^2+(n-1)(n-1+p)}{2(1-n)x+2m}\ x+\frac{n-p+1}{2}$

Mà đó cũng chính là phương trình đường thẳng đi qua 2 điểm cực trị, có dạng $y=ax+b$, nên :

$b=\frac{n-p+1}{2}$

Còn $a=\frac{pmx+m^2+(n-1)(n-1+p)}{2(1-n)x+2m}$

$\Rightarrow a[2(1-n)x+2m]=pmx+m^2+(n-1)(n-1+p)\Rightarrow a=\frac{pm}{2(n-1)}=\frac{m^2+(n-1)(n-1+p)}{2m}$

Dạ không phải cái này.....mà ở đoạn $a=\frac{m}{2};b=n;p=1-n$...tại sao lại ra được như vậy..???


KẺ MẠNH CHƯA CHẮC ĐÃ THẮNG



MÀ KẺ THẮNG MỚI CHÍNH LÀ KẺ MẠNH!.



(FRANZ BECKEN BAUER)




ÔN THI MÔN HÓA HỌC TẠI ĐÂY.


#6 chanhquocnghiem

chanhquocnghiem

    Thiếu tá

  • Thành viên
  • 2075 Bài viết
  • Giới tính:Nam
  • Đến từ:Vũng Tàu
  • Sở thích:Toán,Thiên văn,Lịch sử

Đã gửi 14-09-2017 - 06:55

Dạ không phải cái này.....mà ở đoạn $a=\frac{m}{2};b=n;p=1-n$...tại sao lại ra được như vậy..???

$\frac{pm}{2(1-n)}=\frac{m^2+(n-1)(n-1+p)}{2m}\Leftrightarrow pm^2=[m^2+(n-1)^2](1-n)-p(n-1)^2\Leftrightarrow p=1-n$

Thay $p=1-n$ vào hệ phương trình $\Rightarrow a=\frac{m}{2}$ ; $b=n$


...

Ðêm nay tiễn đưa

Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...

 

http://www.wolframal...-15)(x^2-8x+12)


#7 caybutbixanh

caybutbixanh

    Trung úy

  • Thành viên
  • 888 Bài viết
  • Giới tính:Không khai báo

Đã gửi 14-09-2017 - 21:09

$\frac{pm}{2(1-n)}=\frac{m^2+(n-1)(n-1+p)}{2m}\Leftrightarrow pm^2=[m^2+(n-1)^2](1-n)-p(n-1)^2\Leftrightarrow p=1-n$

Thay $p=1-n$ vào hệ phương trình $\Rightarrow a=\frac{m}{2}$ ; $b=n$

Vâng con cám ơn chú nhiều......tiện thể cho hỏi luôn cái này : khi cháu đọc sách thì họ bảo gặp dạng hàm phân thức dạng bậc 2 trên bậc 1 thì lấy đạo hàm tử chia đạo hàm mẫu thì sẽ ra phương trình đi qua 2 điểm cực trị của hàm nhưng không lý giải vì sao lại được như vậy.....chú có thể giải thích vì sao lại có thể làm như vậy không ạ ?....


KẺ MẠNH CHƯA CHẮC ĐÃ THẮNG



MÀ KẺ THẮNG MỚI CHÍNH LÀ KẺ MẠNH!.



(FRANZ BECKEN BAUER)




ÔN THI MÔN HÓA HỌC TẠI ĐÂY.


#8 chanhquocnghiem

chanhquocnghiem

    Thiếu tá

  • Thành viên
  • 2075 Bài viết
  • Giới tính:Nam
  • Đến từ:Vũng Tàu
  • Sở thích:Toán,Thiên văn,Lịch sử

Đã gửi 15-09-2017 - 11:45

Vâng con cám ơn chú nhiều......tiện thể cho hỏi luôn cái này : khi cháu đọc sách thì họ bảo gặp dạng hàm phân thức dạng bậc 2 trên bậc 1 thì lấy đạo hàm tử chia đạo hàm mẫu thì sẽ ra phương trình đi qua 2 điểm cực trị của hàm nhưng không lý giải vì sao lại được như vậy.....chú có thể giải thích vì sao lại có thể làm như vậy không ạ ?....

$y=\frac{ax^2+bx+c}{dx+e}\Rightarrow y'=0\Leftrightarrow adx^2+2aex+be-cd=0$ (*)

Để tìm pt đường thẳng qua 2 điểm cực trị, ta biến đổi :

$y=\frac{adx^2+bdx+cd}{d(dx+e)}=\frac{adx^2+bdx+cd+adx^2+2aex+be-cd}{d(dx+e)}$

$=\frac{(2ax+b)(dx+e)}{d(dx+e)}=\frac{2ax+b}{d}$


...

Ðêm nay tiễn đưa

Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...

 

http://www.wolframal...-15)(x^2-8x+12)






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh