Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected] để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


Hình ảnh

Tuần $2$ tháng $9/2017$: Chứng minh $\frac{AJ}{AL}=\frac{MN}{BC}$


  • Please log in to reply
Chủ đề này có 12 trả lời

#1 JUV

JUV

    Trung sĩ

  • Điều hành viên OLYMPIC
  • 138 Bài viết
  • Giới tính:Nam
  • Đến từ:Nam Định
  • Sở thích:Manga, Music

Đã gửi 10-09-2017 - 22:33

Như vậy lời giải cho hai bài Tuần 1, tháng 9, 2017 đã được đưa tại đây kèm theo đó là hai bài toán mới của thầy Trần Quang Hùng và anh Ngô Quang Dương. Xin được trích dẫn lại hai bài toán:

Bài 1: Cho tam giác $ABC$ và $M,N$ nằm trên cạnh $BC$ sao cho $M$ nằm giữa $N,B$.Lấy $P,Q$ trên $AM,AN$ để $BP,CQ$ cùng vuông góc với $BC$. $K,J$ là tâm ngoại tiếp $(APQ),(AMN)$. $L$ là hình chiếu của $K$ lên $AJ$. Chứng minh $\frac{AJ}{AL}=\frac{MN}{BC}$

Hình vẽ

eM2iXER.png

Bài 2: Cho tam giác $ABC$ và $l$ là 1 đường thẳng bất kì. $D,E,F$ lần lượt là hình chiếu của $A,B,C$ lên $l$.$X,Y,Z$ lần lượt chia $AD,BE,CF$ theo cùng $1$ tỉ số $k$. Các đường lần lượt qua $X,Y,Z$ và vuông góc $BC,CA,AB$ đồng quy tại $K$. Chứng minh $(KAX),(KBY),(KCZ)$ đồng trục và trục đẳng phương của chúng đi qua điểm cố định khi $k$ thay đổi.

Hình vẽ

z6aGTL9.png


Bài viết đã được chỉnh sửa nội dung bởi JUV: 10-09-2017 - 22:36


#2 ecchi123

ecchi123

    Trung sĩ

  • Điều hành viên OLYMPIC
  • 177 Bài viết
  • Giới tính:Nam
  • Đến từ:Hoàng Văn Thụ - Hòa bình
  • Sở thích:Hình , Dragonball

Đã gửi 10-09-2017 - 22:51

Lời giải bài 1 :

Gọi $PQ$ cắt $BC$ tại $H$ , ta có $\frac{AJ}{MN}=\frac{1}{2.sinMAN}=\frac{AK}{PQ}$

Mặt khác $\widehat{KAL}=\widehat{LAM}-\widehat{KAM}=\widehat{AQP}-\widehat{ANM}=\widehat{CHQ}$ nên $\frac{AK}{AL}=\frac{HQ}{HC}=\frac{PQ}{BC}$

Vậy $\frac{AJ}{MN}=\frac{AK}{PQ}=\frac{AL}{BC}$

123.png


~O)  ~O)  ~O)


#3 ecchi123

ecchi123

    Trung sĩ

  • Điều hành viên OLYMPIC
  • 177 Bài viết
  • Giới tính:Nam
  • Đến từ:Hoàng Văn Thụ - Hòa bình
  • Sở thích:Hình , Dragonball

Đã gửi 10-09-2017 - 23:09

Lời giải bài 2 :

(Chứng minh Đường thẳng qua $X,Y,Z$ vuông góc với $CB,CA,AB$ đồng quy tại $K$ : $l$ cắt $AB,AC$ tại $M,N$  . Đường thẳng qua $M,N$ vuông góc với $AC,AB$ cắt $BY,CZ$ tại $Y',Z'$ . $X'$ là trực tâm tam giác $AMN$ . Đường thẳng qua $X',Y',Z'$ vuông góc với $CB,CA,AB$ đồng quy tại $X'$ . Hơn nữa $X',Y',Z'$ chia $AD,BE,CF$ cùng 1 tỷ số nên Đường thẳng qua $X,Y,Z$ vuông góc với $CB,CA,AB$ đồng quy tại $K$ nằm trên đường nối trực tâm 2 tam giác $ABC,AMN$)

 

 

Giả sử $(CZK)$ cắt $(ABC)$ tại $L$ .Ta có $(LB,LK)=(LB,LC)+(LC,LK)=(AB,AC)+(ZC,ZK)=(AM,AN)+(MN,MA)=(MN,AN)=(YB,YK) (mod \pi)$ nên $(LBYK)$ nội tiếp . Tương tự thì $(LAXK)$ nt , Vậy 3 đường tròn đó đồng quy tại $K,L$ . Mặt khác $KL$ cắt $(O)$ tại $H$ thì $(OH,OB)=2(LK,LB)=2(AC,l) (mod \pi)$ cố định nên $H$ cố định 

1234.png


~O)  ~O)  ~O)


#4 quanghung86

quanghung86

    Thiếu úy

  • Điều hành viên
  • 632 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Hình học

Đã gửi 10-09-2017 - 23:22

Bài 1 là mở rộng đề thi IGO 2017 khi MN=BC/2 ta có bài IGO 2017 :)!



#5 manhtuan00

manhtuan00

    Trung sĩ

  • Thành viên
  • 108 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Khoa học Tự nhiên

Đã gửi 10-09-2017 - 23:36

Lời giải bài 1 của em ạ 

Gọi $X$ là giao điểm của $(AMN)$ với $(APQ)$ . $AJ$ cắt $(AMN),(APQ)$ lần lượt tại $H,G$ . $AS$ là đường kính của $(APQ)$ . Khi đó ta có $X,H,S$ thẳng hàng và $\triangle XMN \cap H \sim \triangle XPQ \cap G$ . Ta có biến đổi tỉ số : $\frac{AJ}{AL} = \frac{AH}{AG} = \frac{AH}{AS}.\frac{AS}{AG} = \frac{XH}{XG}.\frac{PQ}{BC} = \frac{MN}{PQ}.\frac{PQ}{BC}$ . Ta có điều cần chứng minh


Bài viết đã được chỉnh sửa nội dung bởi manhtuan00: 10-09-2017 - 23:37


#6 cleverboy

cleverboy

    Binh nhất

  • Thành viên
  • 25 Bài viết

Đã gửi 11-09-2017 - 01:54

Lời giải của bài toán 1.

Hình gửi kèm

  • tuan2-9-2017 giai.png
  • tuan2-9-2017 hinh.png


#7 quanghung86

quanghung86

    Thiếu úy

  • Điều hành viên
  • 632 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên KHTN
  • Sở thích:Hình học

Đã gửi 11-09-2017 - 10:51

Cám ơn Trung, Tuấn và Dũng đã đóng góp các lời giải hay, bài 2 cũng rất thú vị mọi người hãy quan tâm :)!



#8 QuangDuong12011998

QuangDuong12011998

    Hạ sĩ

  • Thành viên
  • 50 Bài viết
  • Giới tính:Nam
  • Sở thích:Geometry

Đã gửi 12-09-2017 - 10:53

Lời giải của Trung đúng rồi.

Bài 2 mình tìm ra đã rất lâu. Ban đầu mình tìm ra với trường hợp $X\equiv D$, $Y\equiv E$, $Z\equiv F$ rồi tổng quát lên. Chứng minh của mình cũng biến đổi góc thôi.

Bài 2 là một bài rất nhẹ nhàng.

Mình mong đợi nhiều hơn chỉ là một lời giải - không phải vì mình chờ lời giải khác mà là vì cấu hình bài toán còn nhiều thứ để vọc lắm. Bài toán không phải để giải.


Bài viết đã được chỉnh sửa nội dung bởi QuangDuong12011998: 12-09-2017 - 10:54


#9 perfectstrong

perfectstrong

    $LOVE(x)|_{x =\alpha}^\Omega=+\infty$

  • Quản trị
  • 4144 Bài viết
  • Giới tính:Nam
  • Sở thích:Đàn guitar, ngắm người mình yêu, học toán

Đã gửi 12-09-2017 - 16:40

Lời giải bài 2 :

(Chứng minh Đường thẳng qua $X,Y,Z$ vuông góc với $CB,CA,AB$ đồng quy tại $K$ : $l$ cắt $AB,AC$ tại $M,N$  . Đường thẳng qua $M,N$ vuông góc với $AC,AB$ cắt $BY,CZ$ tại $Y',Z'$ . $X'$ là trực tâm tam giác $AMN$ . Đường thẳng qua $X',Y',Z'$ vuông góc với $CB,CA,AB$ đồng quy tại $X'$ . Hơn nữa $X',Y',Z'$ chia $AD,BE,CF$ cùng 1 tỷ số nên Đường thẳng qua $X,Y,Z$ vuông góc với $CB,CA,AB$ đồng quy tại $K$ nằm trên đường nối trực tâm 2 tam giác $ABC,AMN$)

Chứng minh này có sử dụng định lý hay bổ đề nào không?


Luôn yêu để sống, luôn sống để học toán, luôn học toán để yêu!!! :D

$$\text{LOVE}\left( x \right)|_{x = \alpha}^\Omega = + \infty $$




I'm still there everywhere.

#10 manhtuan00

manhtuan00

    Trung sĩ

  • Thành viên
  • 108 Bài viết
  • Giới tính:Nam
  • Đến từ:THPT chuyên Khoa học Tự nhiên

Đã gửi 12-09-2017 - 19:39

Lời giải bài 2 của em ạ : 

1) Ta chứng minh đường thẳng qua $X,Y,Z$ vuông góc $BC,CA,AB$ đồng quy 

Gọi $H$ là trực tâm $\triangle ABC$ , $G$ là cực trực giao của $d$ đối với $\triangle ABC$ . Gọi $K$ là điểm chia $GH$ theo tỉ số $k$ . Khi đó theo định lý thales , $XK,YK,ZK$ vuông góc $BC,CA,AB$ nên đường thẳng qua $X,Y,Z$ vuông góc $BC,CA,AB$ đồng quy 

2) Ta chứng minh bài toán

Gọi $J$ là giao điểm của $(BYK) , (CZK)$ , khi đó ta có $(JB,JC) = (JB,JK) +(JK,JC) = (YB,YK) +(ZK,ZC) = (EB,BH) + (CH,CF) = (BH,CH) = (AB,AC)$ nên $J$ nằm trên $(O)$ 

Suy ra $(AXK) , (BYK) , (CZK)$ đồng quy tại $J$ nằm trên $(O)$

Gọi $V$ là giao điểm của $KJ$ với $(O)$ khác $J$ . Ta có $\angle VAC = \angle KJC = \angle KZF = \angle HCF$ cố định do $d$ cố định và $\triangle ABC$ cố định , suy ra $V$ cố định 

Untitled.png


Bài viết đã được chỉnh sửa nội dung bởi manhtuan00: 12-09-2017 - 20:19


#11 Alkiiro

Alkiiro

    Lính mới

  • Thành viên mới
  • 7 Bài viết

Đã gửi 20-03-2018 - 22:10

Lời giải bài 1 :

Gọi $PQ$ cắt $BC$ tại $H$ , ta có $\frac{AJ}{MN}=\frac{1}{2.sinMAN}=\frac{AK}{PQ}$

Mặt khác $\widehat{KAL}=\widehat{LAM}-\widehat{KAM}=\widehat{AQP}-\widehat{ANM}=\widehat{CHQ}$ nên $\frac{AK}{AL}=\frac{HQ}{HC}=\frac{PQ}{BC}$

Vậy $\frac{AJ}{MN}=\frac{AK}{PQ}=\frac{AL}{BC}$

attachicon.gif123.png

Anh có thể giải thích cho e đoạn \widehat{LAM}-\widehat{KAM}=\widehat{AQP}-\widehat{ANM} được không? Vì sao hai hiệu này bằng nhau ạ?



#12 ecchi123

ecchi123

    Trung sĩ

  • Điều hành viên OLYMPIC
  • 177 Bài viết
  • Giới tính:Nam
  • Đến từ:Hoàng Văn Thụ - Hòa bình
  • Sở thích:Hình , Dragonball

Đã gửi 23-03-2018 - 17:31

Anh có thể giải thích cho e đoạn \widehat{LAM}-\widehat{KAM}=\widehat{AQP}-\widehat{ANM} được không? Vì sao hai hiệu này bằng nhau ạ?

$ \widehat{LAM}-\widehat{KAM}=(90-\widehat{ANM})-(90-\widehat{AQP})$


~O)  ~O)  ~O)


#13 thetam

thetam

    Lính mới

  • Thành viên mới
  • 1 Bài viết
  • Giới tính:Nam
  • Đến từ:Hà Nội.
  • Sở thích:Mua cột đèn trang trí công viên, sân vườn, khu đô thị tại TK Lighting để có giá tốt nhất và chất lượng phục vụ tốt nhất. Chắc chắn bạn sẽ yên tâm về chất lượng chiếu sáng cảnh quan cũng như độ an toàn, chắc chắn của phần cột. Báo giá cột đèn chiếu sáng sân vườn tốt nhất qua hotline 0948 908 333. Nhà máy tại KCN Quất Động, Thường Tín, Hà Nội.

Đã gửi 17-10-2018 - 10:41

chấm [.] hóng theo dõi bài toàn hay này ạ, mò cả sáng chưa ra






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh