Đến nội dung


Chú ý

Nếu bạn gặp lỗi trong quá trinh đăng ký thành viên, hoặc đã đăng ký thành công nhưng không nhận được email kích hoạt, hãy thực hiện những bước sau:

  • Đăng nhập với tên và mật khẩu bạn đã dùng kể đăng ký. Dù bị lỗi nhưng hệ thống đã lưu thông tin của bạn vào cơ sở dữ liệu, nên có thể đăng nhập được.
  • Sau khi đăng nhập, phía góc trên bên phải màn hình sẽ có nút "Gửi lại mã kích hoạt", bạn nhấn vào nút đó để yêu cầu gửi mã kích hoạt mới qua email.
Nếu bạn đã quên mật khẩu thì lúc đăng nhập hãy nhấn vào nút "Tôi đã quên mật khẩu" để hệ thống gửi mật khẩu mới cho bạn, sau đó làm theo hai bước trên để kích hoạt tài khoản. Lưu ý sau khi đăng nhập được bạn nên thay mật khẩu mới.

Nếu vẫn không đăng nhập được, hoặc gặp lỗi "Không có yêu cầu xác nhận đang chờ giải quyết cho thành viên đó", bạn hãy gửi email đến [email protected] để được hỗ trợ.
---
Do sự cố ngoài ý muốn, tất cả bài viết và thành viên đăng kí sau ngày 08/08/2019 đều không thể được khôi phục. Những thành viên nào tham gia diễn đàn sau ngày này xin vui lòng đăng kí lại tài khoản. Ban Quản Trị rất mong các bạn thông cảm. Mọi câu hỏi hay thắc mắc các bạn có thể đăng vào mục Hướng dẫn - Trợ giúp để được hỗ trợ. Ngoài ra nếu các bạn thấy diễn đàn bị lỗi thì xin hãy thông báo cho BQT trong chủ đề Báo lỗi diễn đàn. Cảm ơn các bạn.

Ban Quản Trị.


Hình ảnh

$(x-a_1)(x-a_2)....(x-a_n)-1$

khaquy toan10 nangcao dathuc dathucbatkhaquy batkhaquy nangcao10 chuyen10 chuyentoan thpt

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 Mai123461

Mai123461

    Lính mới

  • Thành viên mới
  • 1 Bài viết

Đã gửi 24-10-2017 - 17:15

 Chứng minh rằng với mọi bộ số nguyên $a_i(i= \overline{1,n})$ phân biệt, đa thức $(x-a_1)(x-a_2)....(x-a_n)-1$ bất khả quy trong $\mathbb{Z} [x].$


Bài viết đã được chỉnh sửa nội dung bởi halloffame: 25-10-2017 - 01:18


#2 ducthai2133

ducthai2133

    Binh nhì

  • Thành viên mới
  • 19 Bài viết
  • Giới tính:Nam
  • Sở thích:Analytics,Philosophy

Đã gửi 02-12-2017 - 10:09

 Chứng minh rằng với mọi bộ số nguyên $a_i(i= \overline{1,n})$ phân biệt, đa thức $(x-a_1)(x-a_2)....(x-a_n)-1$ bất khả quy trong $\mathbb{Z} [x].$

giả sử P(x) khả quy. Do đó tồn tại 2 đa thức f(x),g(x) nguyên có bậc lớn hơn 0 thỏa mãn: P(x)=f(x)g(x)
có: (x-a1)(x-a2)...(x-an)-1=f(x)g(x)
suy ra f(ak)g(ak)=-1 ->f(ak)=-g(ak)=+-1
Ta có đa thức A(x)=f(x)+g(x) là đa thức có bậc $\leq n-1$ 
          f(ak)+g(ak)=0 nên f(x)+g(x)$\equiv 0$
=)) P(x)=(x-a1)(x-a2)...(x-an)-1=-[f(x)]2

vô lý vì hệ số của xn ở P(x)=1 mà ở vế phải $\geq$ 0
vậy đa thức P(x) bkq


Sự quyến rũ của người phụ nữ ko đến từ vẻ đẹp của cô ấy mà đến từ đôi mắt của kẻ si tình...






Được gắn nhãn với một hoặc nhiều trong số những từ khóa sau: khaquy, toan10, nangcao, dathuc, dathucbatkhaquy, batkhaquy, nangcao10, chuyen10, chuyentoan, thpt

0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh