Đến nội dung


Chú ý

Do trục trặc kĩ thuật nên diễn đàn đã không truy cập được trong ít ngày vừa qua, mong các bạn thông cảm.

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

Chứng minh rằng trong n+1 số bất kỳ thuộc tập hợp {1,..2n} luôn chọn được 2 số mà số này là bội của số kia

tổ hợp dirichlet

  • Please log in to reply
Chủ đề này có 2 trả lời

#1 taconghoang

taconghoang

    Trung sĩ

  • Thành viên
  • 130 Bài viết
  • Giới tính:Nam
  • Sở thích:Hình học phẳng , my girl <3

Đã gửi 08-11-2017 - 22:27

Chứng minh rằng trong n+1 số bất kỳ thuộc tập hợp {1,..2n} luôn chọn được 2 số mà số này là bội của số kia



#2 taconghoang

taconghoang

    Trung sĩ

  • Thành viên
  • 130 Bài viết
  • Giới tính:Nam
  • Sở thích:Hình học phẳng , my girl <3

Đã gửi 08-11-2017 - 22:32

Viết n+1 số đã cho dưới dạng : 

$a_{1}=2^{k_{1}}b_{1}, a_{2}=2^{k_{2}}b_{2},...,a_{n+1}=2^{k_{n+1}}b_{n+1}$

trong đó b1,b2,...,bn+1 là các số lẻ. Ta có $1\leq b_{1},b_{2},...,b_{n+1}\leq 2n-1$

Mà trong khoảng từ 1 đến 2n-1 có n số lẻ nên tồn tại 2 số p khác q sao cho $b_{p}=b_{q}$

Khi đó $a_{p}$ và $a_{q}$ có 1 số là bội của số kia



#3 Ducle

Ducle

    Binh nhì

  • Thành viên mới
  • 19 Bài viết

Đã gửi 22-03-2019 - 05:50

Bạn ơi cho mình hỏi tại sao n+1 lại viết đưới dạng a1=2^k.b1.....







1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh