Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh
- - - - -

Tính $\int _{-\infty }^0 \frac{1}{x^2-9}dx$

chú nghiêm idol

  • Please log in to reply
Chủ đề này có 3 trả lời

#1 caybutbixanh

caybutbixanh

    Trung úy

  • Thành viên
  • 888 Bài viết
  • Giới tính:Không khai báo

Đã gửi 22-11-2017 - 11:15

Đề bài: Tính $\int _{-\infty }^0 \frac{1}{x^2-9}dx$


KẺ MẠNH CHƯA CHẮC ĐÃ THẮNG



MÀ KẺ THẮNG MỚI CHÍNH LÀ KẺ MẠNH!.



(FRANZ BECKEN BAUER)




ÔN THI MÔN HÓA HỌC TẠI ĐÂY.


#2 chanhquocnghiem

chanhquocnghiem

    Thiếu tá

  • Thành viên
  • 2075 Bài viết
  • Giới tính:Nam
  • Đến từ:Vũng Tàu
  • Sở thích:Toán,Thiên văn,Lịch sử

Đã gửi 22-11-2017 - 20:09

Đề bài: Tính $\int _{-\infty }^0 \frac{1}{x^2-9}dx$

$I=\int _{-\infty }^0 \frac{1}{x^2-9}\ dx=\int _0^{+\infty} \frac{1}{x^2-9}\ dx=\int_0^3 \frac{1}{x^2-9}\ dx+\int _3^{+\infty } \frac{1}{x^2-9}\ dx$

$\int_0^3 \frac{1}{x^2-9}\ dx=\lim_{\varepsilon \to0^+}\int_0^{3-\varepsilon }\frac{1}{6}\left ( \frac{1}{x-3}-\frac{1}{x+3} \right )dx$

$=\frac{1}{6}\lim_{\varepsilon \to0^+}\left [ \ln(3-x)-\ln(3+x) \right ]\Bigg|_0^{3-\varepsilon }=\frac{1}{6}\lim_{\varepsilon\to0^+}\left [ \ln\varepsilon -\ln(6-\varepsilon ) \right ]$ (1)

$\int_3^{+\infty} \frac{1}{x^2-9}\ dx=\lim_{\varepsilon \to0^+,a\to+\infty}\int_{3+\varepsilon }^a\frac{1}{6}\left ( \frac{1}{x-3}-\frac{1}{x+3} \right )dx$

$=\frac{1}{6}\lim_{\varepsilon \to0^+,a\to+\infty}\left [ \ln(x-3)-\ln(x+3) \right ]\Bigg|_{3+\varepsilon }^a=\frac{1}{6}\lim_{\varepsilon \to0^+,a\to+\infty}\left ( \ln\frac{a-3}{a+3}-\ln\varepsilon +\ln(6+\varepsilon ) \right )$ (2)

(1),(2) $\Rightarrow I=\frac{1}{6}\lim_{\varepsilon \to0^+,a\to+\infty}\left ( \ln\varepsilon -\ln(6-\varepsilon )+\ln\frac{a-3}{a+3}-\ln\varepsilon +\ln(6+\varepsilon ) \right )=0$.


...

Ðêm nay tiễn đưa

Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...

 

http://www.wolframal...-15)(x^2-8x+12)


#3 caybutbixanh

caybutbixanh

    Trung úy

  • Thành viên
  • 888 Bài viết
  • Giới tính:Không khai báo

Đã gửi 23-11-2017 - 23:15

$I=\int _{-\infty }^0 \frac{1}{x^2-9}\ dx=\int _0^{+\infty} \frac{1}{x^2-9}\ dx=\int_0^3 \frac{1}{x^2-9}\ dx+\int _3^{+\infty } \frac{1}{x^2-9}\ dx$

$\int_0^3 \frac{1}{x^2-9}\ dx=\lim_{\varepsilon \to0^+}\int_0^{3-\varepsilon }\frac{1}{6}\left ( \frac{1}{x-3}-\frac{1}{x+3} \right )dx$

$=\frac{1}{6}\lim_{\varepsilon \to0^+}\left [ \ln(3-x)-\ln(3+x) \right ]\Bigg|_0^{3-\varepsilon }=\frac{1}{6}\lim_{\varepsilon\to0^+}\left [ \ln\varepsilon -\ln(6-\varepsilon ) \right ]$ (1)

$\int_3^{+\infty} \frac{1}{x^2-9}\ dx=\lim_{\varepsilon \to0^+,a\to+\infty}\int_{3+\varepsilon }^a\frac{1}{6}\left ( \frac{1}{x-3}-\frac{1}{x+3} \right )dx$

$=\frac{1}{6}\lim_{\varepsilon \to0^+,a\to+\infty}\left [ \ln(x-3)-\ln(x+3) \right ]\Bigg|_{3+\varepsilon }^a=\frac{1}{6}\lim_{\varepsilon \to0^+,a\to+\infty}\left ( \ln\frac{a-3}{a+3}-\ln\varepsilon +\ln(6+\varepsilon ) \right )$ (2)

(1),(2) $\Rightarrow I=\frac{1}{6}\lim_{\varepsilon \to0^+,a\to+\infty}\left ( \ln\varepsilon -\ln(6-\varepsilon )+\ln\frac{a-3}{a+3}-\ln\varepsilon +\ln(6+\varepsilon ) \right )=0$.

Cháu cám ơn chú nhiều.....cơ mà cháu có 2 thắc mắc:

1, Tại sao có thể chuyển được $\int_{-\infty }^0 \frac{1}{x^2-9}dx=\int_0^{+\infty } \frac{1}{x^2-9}dx$

2,Vì sao có thể cộng hai giới hạn :(1) là giới hạn đơn thuần với (2) là giới hạn kép 2 biến....


KẺ MẠNH CHƯA CHẮC ĐÃ THẮNG



MÀ KẺ THẮNG MỚI CHÍNH LÀ KẺ MẠNH!.



(FRANZ BECKEN BAUER)




ÔN THI MÔN HÓA HỌC TẠI ĐÂY.


#4 chanhquocnghiem

chanhquocnghiem

    Thiếu tá

  • Thành viên
  • 2075 Bài viết
  • Giới tính:Nam
  • Đến từ:Vũng Tàu
  • Sở thích:Toán,Thiên văn,Lịch sử

Đã gửi 26-11-2017 - 15:31

Cháu cám ơn chú nhiều.....cơ mà cháu có 2 thắc mắc:

1, Tại sao có thể chuyển được $\int_{-\infty }^0 \frac{1}{x^2-9}dx=\int_0^{+\infty } \frac{1}{x^2-9}dx$

2,Vì sao có thể cộng hai giới hạn :(1) là giới hạn đơn thuần với (2) là giới hạn kép 2 biến....

1) Hàm $y=\frac{1}{x^2-9}$ là hàm chẵn, do đó $\int_{-\infty }^0 \frac{1}{x^2-9}dx=\int_0^{+\infty } \frac{1}{x^2-9}dx$

    Tổng quát, nếu $y=f(x)$ là hàm chẵn thì $\int_{-\infty }^{-a} f(x)dx=\int_a^{+\infty } f(x)dx$ ($a\in\mathbb{R}$)

 

2) Bỏ qua hệ số $\frac{1}{6}$, giới hạn thứ nhất có thể viết thành :

    $\lim_{\varepsilon \to0^+}\left [ \ln\varepsilon -\ln(6-\varepsilon ) \right ]=\lim_{\varepsilon \to0^+,a\to+\infty}\left [ \ln\varepsilon -\ln(6-\varepsilon ) \right ]$

    và như vậy, nó hoàn toàn có thể cộng với cái giới hạn thứ hai bên dưới.


...

Ðêm nay tiễn đưa

Giây phút cuối vẫn còn tay ấm tay
Mai sẽ thấm cơn lạnh khi gió lay
Và những lúc mưa gọi thương nhớ đầy ...

 

http://www.wolframal...-15)(x^2-8x+12)






0 người đang xem chủ đề

0 thành viên, 0 khách, 0 thành viên ẩn danh