Đến nội dung


Chú ý

Nếu các bạn đăng kí thành viên mà không nhận được email kích hoạt thì hãy kiểm tra thùng thư rác (spam). Nếu không biết cách truy cập vào thùng thư rác thì các bạn chịu khó Google hoặc đăng câu hỏi vào mục Hướng dẫn - Trợ giúp để thành viên khác có thể hỗ trợ.


Hình ảnh

CMR: $AA_{2},BB_{2},CC_{2}$ đồng quy.

hình học olympad đồng quy

  • Please log in to reply
Chủ đề này có 1 trả lời

#1 slenderman123

slenderman123

    Trung sĩ

  • Thành viên
  • 175 Bài viết
  • Giới tính:Nam
  • Đến từ:Quảng Trị Provine
  • Sở thích:Giải toán dạo :)

Đã gửi 04-12-2017 - 11:17

Cho $\Delta ABC$, trọng tâm $G$. Hạ các đường cao $GA_{1},GB_{1},GC_{1}(A_{1} \in BC,B_{1} \in CA, C_{1} \in AB)$ . $A_{2},B_{2},C_{2}$ đối xứng với $A_{1},B_{1},C_{1}$ qua $G$. CMR: $AA_{2},BB_{2},CC_{2}$ đồng quy.

Hình gửi kèm

  • hin'hok1.png

Bài viết đã được chỉnh sửa nội dung bởi slenderman123: 04-12-2017 - 11:21

Nguyễn Văn Tự Cường - Trường THPT Chuyên LQĐ - Quảng Trị


#2 ducthai2133

ducthai2133

    Binh nhì

  • Thành viên mới
  • 19 Bài viết
  • Giới tính:Nam
  • Sở thích:Analytics,Philosophy

Đã gửi 04-12-2017 - 16:31

gọi H là trực tâm tg ABC, AH giao BC tại K và AG giao BC tại M

gọi A2,B2,C2 là X,Y,Z nhé viết dưới mỏi tay quá :v

$\overrightarrow{AX}= 2\overrightarrow{AG}-\overrightarrow{AD} = 2\overrightarrow{AG}-(\overrightarrow{AG}+\overrightarrow{GD}) =\overrightarrow{AG}-\overrightarrow{GD} =\overrightarrow{AG}-\frac{1}{3}\overrightarrow{AK}$
có $\alpha \overrightarrow{HA}+\beta \overrightarrow{HB}+\gamma \overrightarrow{HC}=\overrightarrow{0} (\alpha +\beta +\gamma \neq 0) \rightarrow \beta \overrightarrow{KB}+\gamma \overrightarrow{KC}=\overrightarrow{0} \rightarrow \beta \overrightarrow{AB}+\gamma \overrightarrow{AC}=(\beta +\gamma )\overrightarrow{AK} =>\overrightarrow{AX}=1/3(\overrightarrow{AB}+\overrightarrow{AC})-1/3(\frac{\beta \overrightarrow{AB}+\gamma \overrightarrow{AC}}{\beta +\gamma }) =>3\overrightarrow{AX}=\frac{\beta \overrightarrow{AC}+\gamma \overrightarrow{AB}}{\beta +\gamma }$
dựng I thỏa mãn:$\frac{1}{\alpha }\overrightarrow{IA}+\frac{1}{\beta }\overrightarrow{IB}+\frac{1}{\gamma }\overrightarrow{IC}=\overrightarrow{0} -)\frac{1}{\beta }\overrightarrow{AB}+\frac{1}{\gamma }\overrightarrow{AC}=(\frac{1}{\alpha }+\frac{1}{\beta }+\frac{1}{\gamma })\overrightarrow{AI} ->\gamma \overrightarrow{AB}+\beta \overrightarrow{AC}=\beta \gamma (\frac{1}{\alpha }+\frac{1}{\beta }+\frac{1}{\gamma })\overrightarrow{AI} -)3(\beta +\gamma )\overrightarrow{AX}=\beta \gamma (\frac{1}{\alpha }+\frac{1}{\beta }+\frac{1}{\gamma })\overrightarrow{AI} ->\overline{A,X,I}$
Tương tự  BY,CZ đi qua I


Sự quyến rũ của người phụ nữ ko đến từ vẻ đẹp của cô ấy mà đến từ đôi mắt của kẻ si tình...






1 người đang xem chủ đề

0 thành viên, 1 khách, 0 thành viên ẩn danh